REPORT DOCUMENTATION PAGE
AFRL-SR-AR-TR-02-

Public repumng hurdan Ior this collection of inf ion s estimated to average 1 hour per response, including the time for reviewing instruction and reviewing
the coll of Send regarding this burden estimate or any other aspect of this collection of information, including ¥ Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 09%
1. AGENCY USE ONLY /Zeave blank] 2. REPORT DATE 3. RE S

01 DEC 98 - 30 NOV 01
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
OPTIMIZING SIMULATORS: AN INTELLIGENT ANALYSIS TOOL FOR F49620-99-1-0054

COMPLEX OPERATIONAL PROBLEMS

6. AUTHOR(S}
WARREN POWELL

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
PRINCETON UNIVERSITY - REPORT NUMBER
DEPARTMENT OF OPERATIONS RESEARCH AND FINANCIAL

ENGINEERING

PRINCETON, NJ 08544

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES} 10. SPOFSTJ—RWGIMOMTURING
AFOSR/NM AGENCY REPORT NUMBER

801 N. Randolph Street Room 732
Arlington, VA 22203-1977

F49620-99-1-0054

20020909 129

12a. DISTRIBUTION AVAILABILITY STATEMENT 12h. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)
The optimizing simulator represents a class of simulation tools in which the analyst can control the level of intelligence by

adding information classes to the decision function. For example, the current MASS/AMOS simulator for airlift operations
uses a simple rule-based function that acts purely on what is known at the time the decision is made, without using any
forecasts of future activities. This is the first information class. The other three are: forecasts of exogenous events (classical
forecasting), forecasts of the impact of a decision now on the future state of the system (for example, the impact of flying a
C-17 into Saudi Arabia) and expert knowledge (although not reflect in the costs, an expert might tell you never to fly a C-17
into Saudi Arabia, or that it is best to use C5's when moving a certain type of cargo). Our approach to simulation bridges th
traditional gab between simulation and optimization, and at the same time between operations research (which uses cost-based
decision functions) and artificial intelligence (which uses rule-based decision functions). These techniques encompasses the
current methods used in MASS (and its latest version AMOS), and at the same time can compete with commercial linear
programming packages (which are used to solve models such as NRMO, which formulate the airlift problem as a linear
program). We also allow the user to specify desired behaviors in the form of simple, low-dimensional patterns, which
produces behaviors that may not be captured by a cost function. In this way, we provide a bridge between cost-based
operations research models, and rule-based AT techniques.

14. SUBJECT TERMS 15. NUMBER OF PAGES
57
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298 g%ev 2-89) (EG)
Prescribed by ANSI Std
Designed using Perform Pm WHS/DIOR, Oct 84

Castle Laborator)

Department of Operations Research and Financial Engineering
Princeton University

Final Project Report:

Optimizing Simulators: An Intelligent
Analysis Tool for Complex Operational
Problems

Principal Investigator:

Warren B. Powell

Princeton University

Department of Operations Research and Financial Engineering
Princeton, NJ 08544

powell@princeton.edu

Prepared for:

Air Force Office of Scientific Research
Grant: F49620-99-1-0054

February, 2002

Abstract

The Air Force undertakes a variety of analysis efforts to ensure that it has the right
number and type of resources to complete missions in a timely and efficient manner. A
good example is the airlift simulator used by the Air Mobility Command (formerly
MASS, with a new version called AMOS in production). Simulators such as these are
very flexible, able to handle a high level of detail, but with very little intelligence. A
competing technology is optimization models which offer a high level of intelligence, but
limited flexibility. In this research, we propose a continuum of simulators, which we call
optimizing simulators, which span the simplistic rules used in MASS and AMOS, to a
highly intelligent tool that can compete with the most advanced optimization models and
algorithms. We have identified four classes of information, and simulators can be
designed which use just one class, or all four. The technique has been shown to compete
with commercial linear programming packages on special problem classes, and to
outperform these systems when we wish to explicitly model uncertainty. We encourage
the use of cost-based logic (in common with optimization models) but provide for the
inclusion of simple rules in the form of low dimensional patterns that provide direct
control over the behavior of the simulator. The end result is a rich family of analysis
tools that can be tailored to the needs of specific problems.

Table of contents

1. EXCCULIVE SUMIMATY ...c..eveetieeeereeeieieeeiereeniesencessensesesseseeeseesseneessesseesesaesseesessaeonssssesssns 1
2. Overview 0f 1eSearch aCtiVities.......ccoureeereneeririiieecre e 4
2.1 Mathematical modeling of complex operational problemscccoovevvurnne 4
2.2 AlOrithmicC StrateGIeSccvvuveririeciiriisienieieisie s e 5
2.2.1 An adaptive learning Strategyc..ccovverreermeirerueeimeeininieneenns 6
2.2.2 Approximate dynamic programming for resource allocation
PIODIEIMS. .. ettt st s e s 7
2.2.3 Adaptive learning algorithms for discrete routing and
SChEAULING ...evrie e e 9
2.2.4 Modeling expert Knowledgecccoevrvveivevennncniiieninsce, 10
2.3 Software Implementation........c..eeeceererieiinrierereeerre s 12
2.3.1 The DRiP Java modeling library.......ccccoceviviievinciincniiinnececnenen 12
2.3.2 The PILOTVIEW diagnostic SYSteMceveverineerinieeiiniiiciriicsieinncs s 12
2.4 Baby MASS ..o s 14
3. Research reports sponsored by AFOSR........cccoovviiiiiiiininiiicn 17
3.1 Problem repreSentationc.cevivveeeeeeeieneereenniereereseennesee s sreesesenes 18
3.2 Algorithms for dynamic routing and scheduling problemsc.ccocoveenne. 18
9.2.1 Linear value function approximationsc..coeeeveevevinnnecuennnnenens 18
9.2.2 Nonlinear functional approXimationsccceceeceerrrrrsrecenreercinnins 18
9.2.3 Stochastic routing and schedulingcc.ecerivirccninniincnernnns 19
9.2.3 Deterministic routing and scheduling........cccecveveiiniininnencnnnn, 19
0.2.4 BatCh SEIVICE PrOCESSES. .uieureereereerieneeririnrireenresenesnesressaesssessnenas 19
3.3 Modeling the organization and flow of information............cceeevvceieviniinncns 19
3.4 Software architeCtUIEeoceeiieieirirere e 20
3.5 Implementation 1€Search.......c..oceeevecieciiiiiinii e 20
3.6 StUAEnt theSeS...ccuiriiieeriirieeeee e 20
3.6.1 Doctoral diSSertations........c.cevververeereeeniinieeienie e 20
3.6.2 Masters theses diSSErtationsoovvorveeerrrsrsesssssessessseeesssenes 21

3.6.3 Undergraduate senior theSesoceevreereneneennenncenniceneeerennens 21

4. Personnel SUPPOITEd.......ovvemerveieiiiriiiricneeecte e e 21

5. Interactions/tranSitioNScoeeverrereereninere et 22
5.1. Participation/presentations at meetings, conferences, €tc..............ccooevevenenn. 22
5.2. Consultative and advisory functions..........cccceevveevccrinicinicninnniece 24
5.3, TrANSIEIONS. ..c.vevenirrreeririeerreecentei ettt sttt st s s sa et ane s 24

Technical appendiXcccoovriviiiiiiiii i 27
AT OVEIVIEW .ove ettt sttt sb s 27
A.2 The optimizing-simulator CONCEPLccorveererviniviviiniiii 28

A.2.1 The basic SIMUIAtOr........cccevririeiciriei s 28
A.2.2 The airlift flow problem as an optimizing simulator 30
A.3 Adaptive dynamic programmingcc.ceceeceeeeererenereiinninie e s 33
A.3.1 An introduction to forward dynamic programming...........c...cce.e... 33
A.3.2 The three curses of dimensionality in resource management........ 35
A.3.3 Solving the three curses of dimensionalityccoccecvvererncnnennns 36
A.4 The dynamic resource transformation problemcccecveveeeinininiiinnnne 38
A.4.1 Elements of @a DRTPcccovviiiiiiriiiiiinieecereeece e 38
A.4.2 Major problem ClasSesccevverrereerieneenirrirecree e 39
A.4.3 Resource layering.........coceevevevvenieineniinieninenenncesese e 40
A.5 Experimental reSULLS.cvvivveiiimeneiicieeeee e s 42
A.5.1 Convergence of the CAVE algorithm........cccoovceeeiinienenccnnne. 42
A.5.2 CAVE on two-stage allocation problems with no substitution......43
A.5.3 CAVE on two-stage allocation problems with substitution........... 45
A.5.4 The CAVE algorithm on multicommodity flow problems............ 45
A.5.5 The CAVE algorithm in stochastic simulations...........c.cceceeereea... 46
A.5.6 The dynamic assignment problemccccevveveriervenivrieenceneneenen. 47
A.6 The PILOTVIEW diagnostic SYStEMeecureverrrriererreeenirenvereeeeesienaeseenns 49

A.7 Optimization with patterns: combining “OR” and “Al”.......ccccooveevreirennes 52

Powell-Final Progress report-1999-2001 Page 1

1. Executive summary

The optimizing simulator represents a class of simulation tools in which the analyst can
control the level of intelligence by adding information classes to the decision function.
For example, the current MASS/AMOS simulator for airlift operations uses a simple
rule-based function that acts purely on what is known at the time the decision is made,
without using any forecasts of future activities. This is the first information class. The
other three are: forecasts of exogenous events (classical forecasting), forecasts of the
impact of a decision now on the future state of the system (for example, the impact of
flying a C-17 into Saudi Arabia) and expert knowledge (although not reflect in the costs,
an expert might tell you never to fly a C-17 into Saudi Arabia, or that it is best to use C-
5’s when moving a certain type of cargo).

Our approach to simulation bridges the traditional gab between simulation and
optimization, and at the same time between operations research (which uses cost-based
decision functions) and artificial intelligence (which uses rule-based decision functions).
These techniques encompasses the current methods used in MASS (and its latest version,
AMOS), and at the same time can compete with commercial linear programming
packages (which are used to solve models such as NRMO, which formulate the airlift
problem as a linear program). We also allow the user to specify desired behaviors in the
form of simple, low-dimensional patterns, which produces behaviors that may not be
captured by a cost function. In this way, we provide a bridge between cost-based
operations research models, and rule-based Al techniques.

The research has been organized along four key dimensions:

e The mathematical modeling of complex operational problems. — We propose a
new mathematical modeling framework, called a dynamic resource
transformation problem, that captures multilayered resources, and explicit
modeling of the organization and flow of decisions and information.

e The design of efficient methods to provide the highest quality solutions to these
problems. — We have proposed a new class of adaptive learning algorithms based
on separable, piecewise linear functions. We have proven convergence under
special conditions, and demonstrated experimentally that they produce high
quality solutions with much faster convergence than earlier approaches.

e The implementation of these models and algorithms in software. — We have
developed a Java-based modeling library for the problem class. The library
simplifies some of the new modeling principles that we have developed, such as
hierarchical aggregation, information decomposition, and the handling of
multiattribute, multilayered resources.

e The testing of these ideas both on the airlift mobility problem, but also several
real industrial problems. — In addition to applying these ideas to the airlift

Powell-Final Progress report-1999-2001 Page 2

mobility problem, we have also implemented these techniques at major railroads
and trucking companies.

Our research has produced a number of specific findings:

We have shown that the optimizing simulator approach provides high solution
quality (both in the laboratory and in field implementation) offering both
intelligence and tremendous modeling flexibility. Applications based on the
optimizing simulator concept are now in production at Yellow Freight, the
Burlington Northern Sante Fe Railroad, and the Norfolk Southern Railroad. We
also have a simulator of airlift operations based on this concept.

We have introduced the SPAR algorithm which uses sequences of separable,
piecewise linear functional approximations. We have shown that SPAR provides
provably optimal convergence in special cases, and optimal or near-optimal
solutions with fast convergence for more general problems that arise in practice.
The strategy allows an optimizing simulator to produce results that match
commercial solvers on deterministic problems, and outperform them, sometimes
by wide margins, for problems where uncertainty plays an important role (for
example, if a C-17 might fail at an airbase which does not have proper repair
facilities for this type of aircraft, it would be better to use a different type of
aircraft for that route). The practical benefits of this new class of algorithmic
strategy is the ability to provide optimizing behavior in a simulation-based
framework (which provides outstanding modeling flexibility)

We devised a method for accelerating the performance of the SPAR algorithm for
problems where there are many different types of resources, using hierarchical
aggregation (we estimate the value of another resource at a detailed level, and
then produce estimates at multiple levels of aggregation). The result is a method
that provides faster convergence in the early iterations, and better limiting
performance than any algorithm working at a fixed level of aggregation.

We now have algorithms which combine traditional engineering cost functions
with low-dimensional patterns (for example, a pattern might be “avoid sending C-
17’s into Saudi Arabia). These are easy to specify and allow the user to produce
desired behaviors without time-consuming engineering of the cost model. It also
allows behaviors to be specified with different degrees of desirability. Based on
the theory of proximal point algorithms, this logic brings together cost-based
operations research models with rule-based artificial intelligence. In industrial
applications (Yellow Freight System, Norfolk Southern Railroad) this logic has
proven instrumental.

We have extended the application of approximate dynamic programming methods
using functional approximations to high dimensional batch service problems (for
example, when to release an aircraft carrying different types of freight to a
destination). This research showed that we could find near-optimal solutions
using an iterative learning approach. The approach holds promise for solving

Powell-Final Progress report-1999-2001 Page 3

large-scale dynamic network design problems using an optimizing simulator
strategy. This problem class has completely resisted other algorithmic strategies.

¢ We have shown that using higher levels of intelligence while simulating the airlift
mobility problem can produce faster throughputs. These rules would be relatively
easy to implement in the new AMOS system.

e We have demonstrated the new applications can be rapidly modeled using the
new DRiP Java modeling library. This was tested recently by developing both a
driver management system for Yellow Freight and a car distribution model for
Norfolk Southern Railroad.

e QOur general modeling framework provided the foundation for the design of a very
general-purpose diagnostic library called PILOTVIEW that allows analysts to not
only see the results of a model, but to step inside a model and analyze individual
decisions. PILOTVIEW has been critical in the rapid development, debugging
and calibration of large scale models.

Powell-Final Progress report-1999-2001 Page 4

2. Overview of research activities

The focus of this research was modeling and analysis tools for complex operational
problems. This research had four broad themes:

e The mathematical modeling of complex operational problems.

e The design of efficient methods to provide the highest quality solutions to these
problems.

e The implementation of these models and algorithms in software.

e The testing of these ideas both on the airlift mobility problem, but also several
real industrial problems.

These four themes span the process of modeling from basic formulation to final
implementation. The remainder of this section provides a more detailed summary of
activities undertaken within each theme, with references to the key supporting research
articles.

2.1 Mathematical modeling of complex operational problems

It is standard practice when formulating problems as optimization models to express the
problem mathematically. This is facilitated by the simplifying assumptions which are
traditionally made when formulating optimization models. By contrast, it is rarely the
case that people will express simulation models mathematically. Instead, verbal
descriptions and flowcharts are more common.

We undertook the development of a new mathematical modeling framework, developing
as much as possible on existing styles and standards. The result is the dynamic resource
transformation problem which is a mathematical vocabulary for very complex problems
such as those faced by the air force, railroads and large trucking companies. It draws
heavily from the concepts in linear programming and simulation, but offers several new
modeling concepts:

e Problem dimensions — The DRTP framework outlines three major dimensions,
each of which have a specific list of subdimensions. While not all problems will
exhibit all dimensions, the result is a checklist of issues to be addressed in any
modeling problem that is more comprehensive than would arise when working
either within a classical math programming framework, or using standard
simulation practices.

e Resource layering — Standard models will capture the flow of a “resource” to
serve tasks. The airlift problem spans the movement of aircraft, pilots, freight,
special equipment, maintenance capabilities and fuel. It is sometimes necessary
to make decisions about an aircraft, with a particular pilot and load of freight, at a

Powell-Final Progress report-1999-2001 Page 5

particular fuel level. The modeling of resource layering extends classical
modeling constructs such as multicommodity flows, and formalizes in an elegant
way the handling of complex attribute vectors.

e Modeling the organization and flow of information — Simulation models
implicitly model information. Most optimization models simply ignore it, and
subtle notational styles actually interfere with the proper modeling of information.
Our modeling notation is explicitly designed to model the information content of
decisions in an elegant way that is completely accessible to modelers with an
engineering background (rather than a strong background in stochastic processes).
We model the evolution of information over time, and the organization of
information among different agents.

e The use of hierarchical aggregation in information representation — When we do
not know something, we often resort to aggregation to obtain additional insights.
Aggregation is a powerful and widely recognized tool, but models are typically
formulated at a single level of aggregation. We represent complex resources at
three (or more) levels of aggregation, depending on what we are doing. The result
is simulations that can handle a high level of detail without becoming
computationally intractable.

This framework has produced two new problem classes. The first is called the
heterogeneous resource allocation problem, which has been presented in:

Powell, W.B., J. Shapiro and H. P. Simao, "An Adaptive, Dynamic Programming
Algorithm for the Heterogeneous Resource Allocation Problem," Transportation
Science, Vol. 36, No. 2, pp. 231-249 (2002).

This problem class has proven useful in modeling the flows of relatively complex
resources which might include people or equipment such as aircraft or locomotives.

The second is called the multilayered resource scheduling problem. A paper on this topic
is in preparation.

The DRTP modeling framework is published in:

Powell, W.B., J. Shapiro and H.P. Simao, “'A Representational Paradigm for
Dynamic Resource Transformation Problems,” Annals of Operations Research on
Modeling (C. Coullard, R. Fourer, andJ. H. Owen, eds), Vol. 104, pp. 231-279,
2001.

2.2 Algorithmic strategies

We have pursued a strategy that we call optimizing simulators which step through time
making decisions, and then repeating this process, iteratively learning from prior

Powell-Final Progress report-1999-2001 Page 6

mistakes. This strategy is not new, but in the past has been restricted to relatively simple
problems. We have devised strategies to apply this learning principle to very large scale
problems.

There are several dimensions to our algorithmic strategy. The first begins with the basic
strategy of the optimizing simulator, which may use four information classes. Two of the
classes require that the simulator run iteratively. The first of these strategies arises when
we want to learn the value of being in a particular state, and the second learns the number
of times we take particular actions (which may or may not be deemed desirable). The
process of learning the value of being in a state requires using a nonstandard dynamic
programming recursion, summarized in section 1.2.1 below. Sections 1.2.2 and 1.2.3
outline activities for two major classes of resource allocation problems: those that are
typically characterized by a small number of resource attributes, and discrete 0/1
problems which typically have large state spaces. Finally, section 1.2.4 describes
methods for incorporating expert knowledge through low-dimensional patterns.

2.2.1 An adaptive learning strategy

Standard simulations step forward through time, applying rules to make decisions, and
then applying the laws of system dynamics to describe the evolution of the state of the
system. A more intelligent simulator uses information about the value of making a
decision that puts the system into a particular state. The challenge is determining how to
learn this value, and given this estimate, how to make decisions now in a computationally
tractable way.

Textbook dynamic programming suggests estimating the value of being in a state using
the recursion:

7S = min ox+ E{V (SIS}

x €X, (S,

. Tt is well known that this approach suffers from the “curse of dimensionality” which

arises when the state variable has multiple dimensions. Our problem actually suffers
from three curses of dimensionality: the state space, the outcome space (which
complicates our ability to find the expectation) and the action space (which complicates
the problem of actually finding the best solution). Our approach is to use an incomplete
state variable, which measures the state of the system immediately after a decision is
made, but before new information is added. When we use this type of state variable, we
obtain a recursion of the form:

7, 8)=E{ min cx + V(501

We then solve our three curses of dimensionality by a) dropping the expectation and
solving the equation for a single sample realization, b) replacing the value function with
an appropriately chosen functional approximation.

This strategy is used in several papers:

Powell-Final Progress report-1999-2001 Page 7

Godfirey, G. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for
Single-Period Fleet Management Problems I. Single Period Travel Times,"
Transportation Science, Vol. 36, No. 1, pp. 21-39 (2002).

Papadaki, K. and W.B. Powell, “A Monotone Adaptive Dynamic Programming
Algorithm for a Stochastic Batch Service Problem” European Journal of Operational
Research, Vol. 142, No. 1, pp. 108-127 (2002).

Powell, W.B., H. Topaloglu and B. van Roy, “Approximate Dynamic Programming
for Dynamic Resource Allocation: Merging Stochastic Programming and Dynamic
Programming”, in preparation.

2.2.2 Approximate dynamic programming for resource allocation problems

Approximate dynamic programming refers broadly to a class of techniques which
approximate the future value of being in a future state. In contrast with classical
techniques which step backward through time (and require enumerating the entire state
space), these methods step forward through time, generating only a subset of states.
However, they still struggle with problems with large state and action spaces (which
includes virtually any resource allocation problem).

We solved the state space problem by using specially designed continuous

Time -

Figure 0 — Illustration of time-space network (in gray) and a subproblem at a point in time
(shaded) using functional anproximations of the future.

Powell-Final Progress report-1999-2001 Page 8

approximations. Linear approximations are the easiest to use, but a special class of
separable, nonlinear approximations works the best, with faster convergence and better
stability. The concept is illustrated in the figure 1, which illustrates a classical space time
diagram (in gray) overlaid by shaded areas which illustrate solving the problem at time t,
using nonlinear approximations of the future. When these approximations are separable,
the resulting problem is quite easy to solve.

The nonlinear functions are created by sampling estimates of the value of one more unit
of a particular type of a resource in the future. Repeating this process iteratively allows
us to form sequences of piecewise linear, concave functions which express the value of
additional units of resource as a function of the number of resources. The overall strategy
requires solving sequences of fairly small linear programs using a commercial solver
which also return the value of additional resources.

Because we sample from probability distributions as we step forward in time, these
marginal values can be quite random, and we encounter the technical challenge of
ensuring that our approximations are concave at every iteration. A strategy for
accomplishing this was first proposed in:

Godfrey, G. and W.B. Powell, "An Adaptive, Distribution-Free Algorithm for the
Newsvendor Problem with Censored Demands, with Application to Inventory and
Distribution Problems," Management Science, Vol. 47, No. 8, pp. 1101-1112, (2001).

A variation of the algorithm, called a leveling procedure, was proposed with a proof of
convergence in:

Topaloglu, H. and W.B. Powell, “An Algorithm for Approximating Piecewise Linear
Concave Functions from Sample Gradients,” submitted to Operations Research
Letters.

A version of the algorithm called the SHAPE algorithm was posed and proven to be
convergent for problems where the functions are continuously differentiable:

R. K.-L. Cheung and W.B. Powell, "SHAPE — A Stochastic, Hybrid Approximation
Procedure for Two-Stage Stochastic Programs,” Operations Research, Vol. 48, No.
1, pp. 73-79 (2000)

Experimental evidence demonstrated the effectiveness of the procedure in fleet
management problems:

Godfrey, G. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for
Single-Period Fleet Management Problems I: Single Period Travel Times,”
Transportation Science, Vol. 36, No. 1, pp. 21-39 (2002).

Godfrey, G. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for
Single-Period Fleet Management Problems II: Multiperiod Travel Times,”
Transportation Science, Vol. 36, No. 1, pp. 40-54 (2002).

Powell-Final Progress report-1999-2001 Page 9

These experiments were applied to relatively simple flow problems known as single
commodity flows (all flows are the same type of equipment). The work was extended to
multicommodity flows in:

Topaloglu, H. and W.B. Powell, “Dynamic Programming Approximations for
Stochastic, Time-Staged Integer Multicommodity Flow Problems,” under revision for
resubmission to Operations Research.

Multicommodity flow problems are somewhat simpler than heterogeneous resource
allocation problems, but offer special complications when we are interested in integer
solutions.

In many real problems, there is not a single decision maker, but instead several
controllers (and possibly one at each geographical location). It is well known that we can
decompose large problems into sequences of smaller problems, and coordinate these
components through pricing mechanisms, which is equivalent to approximating other
subproblems using linear approximations. In practice, these can be unstable. We adapted
our nonlinear strategies to a multiagent setting, and found that even for multicommodity
problems, each subproblem was a pure network. This work is summarized in:

Topaloglu, H. and W.B. Powell, “A Multi-Agent Decision Making Structure for
Dynamic Resource Allocation with Nonlinear Functional Approximations,” submitted
to Operations Research.

Shapiro, J. and W.B. Powell, “A Metastrategy for Dynamic Resource Management
Problems based on Informational Decomposition,” submitted to Informs Journal on
Computing.

One of the challenges of solving stochastic resource allocation problems using
approximate methods is evaluating the quality of the solution. A popular technique for
solving multistage stochastic resource allocation problems is Benders decomposition,
which has proven convergence properties for two-stage problems but had not previously
been proven for multistage problems. The following paper provides a variation of this
algorithm for multistage problems:

Chen, Z.-L. and W.B. Powell, "A Convergent Cutting Plane and Partial Sampling
Algorithm for Multistage Linear Programs with Recourse," Journal of Optimization
Theory and Applications, Vol. 102, No. 3, pp. 497-524 (1999).

We are actively using this technique to evaluate the quality of our approximations for
multistage problems.

2.2.3 Adaptive learning algorithms for discrete routing and scheduling

A separate line of research has been underway for discrete routing and scheduling
problems, which offer special challenges. Nonlinear approximations are of little value
when the flows are 0/1, but routing and scheduling problems tend to have very large state
spaces for individual resources.

Powell-Final Progress report-1999-2001 Page 10

There is a vast array of algorithms for deterministic routing and scheduling problems, but
the literature for dynamic problems is relatively young. A major challenge is that these
problems have to be solved in real time. A paper that overcomes this hurdle, while still
being able to handle the complex attributes of real drivers, is:

Powell, W.B., W. Snow and R. K.-M. Cheung, "Adaptive Labeling Algorithms for the
Dynamic Assignment Problem,” Transportation Science, Vol. 34, No. 1, pp. 67-85
(2000)

An often overlooked source of uncertainty is whether a human will actually implement a
solution recommended by a model. A simulator showed that a very simple strategy for
discounting dual variables would produce solutions that were better than algorithms that
produced globally optimal solutions at each point in time, and better than greedy, myopic
algorithms. This work is reported in:

Powell, W.B., M.T. Towns and A. Marar, “On the Value of Globally Optimal
Solutions for Dynamic Routing and Scheduling Problems,” Transportation Science,
Vol. 34, No. 1, pp. 50-66 (2000).

Several papers were produced on a related problem in the area of parallel machine
scheduling which extended the use of column generation strategies:

Chen, Z.-L. and W.B. Powell, "A Column-Generation Based Decomposition
Algorithm for a Parallel Machine Just-In-Time Scheduling Problem,” European
Journal of Operations Research, Vol. 116, pp. 220-232 (1999).

Chen, Z.-L. and W.B. Powell, "Solving Parallel Machine Scheduling Problems by
Column Generation," Informs Journal of Computing, Vol. 11, No. 1, pp. 78-94,
Winter 1999.

Perhaps our most through investigation of a discrete routing and scheduling problem is
our study of the dynamic assignment problem, which involves dynamically assigning
resources to tasks over time. This problem is fundamental to all resource allocation
problems, and represented our first attempt to study approximations for dynamic two-
layer resource allocation problems. This work is reported in:

’

Spivey, M. and W.B. Powell, “The Dynamic Assignment Problem,” submitted to

Transportation Science, June, 2002.
2.2.4 Modeling expert knowledge

In real problems, it is almost always the case that a domain expert can look at the results
of the model and criticize them. Most of the time it is criticizing activities that should not
be done, but it may also be of the form “you should do this.” These behaviors are easily
coded into simulators as rules, but the strategy with optimization models is that we
should cost out these activities. In practice, identifying all these costs is typically
impractical, and the result is a model that “behaves badly” and which is hard to fix.

Powell-Final Progress report-1999-2001 Page 11

Overlooked in the criticism of optimization models is that many of these rules are
complex and hard to adapt to new situations.

One strategy is to incorporate “rules” in the form of low dimensional patterns. A rule can
be viewed as an action a that is used when a system is in state s. We can code a set of
rules as a series of state action pairs of the form (s,a). For our problem classes, there

can be an exponentially large number of states and actions.

Instead, we can focus on relatively simple rules that guide the optimization rather than
tell us exactly what to do. The state of a system s includes, in principle, the state of
every resource in the system. We avoid this complexity by restricting our attention to the
attribute vector a of a single resource, and a decision d that will act on the resource.
We may even represent this state/action pair at an aggregated level. We thenlet p,, bea

measure (for example, a percentage) of how often we want to use decision d on a
resource with attribute a. Let R, be the number of resources with attribute a, which
means that R_p_, is a measure of the number of resources with attribute a that we would
expect to act on with decision d. If x_, is the number of times our optimization model

would like to act on a resource with attribute a with decision d, then
2

z Z (x4 —R,p,;) isameasure of the deviation between what we would like to do and
a d

2

what we are doing. Let H(x, p) = Z Z(xa .~ R, pad) be our “happiness function”
a d

which expresses the degree to which our optimization algorithm is matching desired
patterns. We can then add this term to our engineering costs, multiplied by a scaling
factor, to produce a modified objective function:

mincx +80H(x, p)

This approach neatly combines simple rules with engineering costs. The patterns p can

be specified by an expert, or from historical activities. We have found that both are
useful.

This algorithmic strategy is known in the mathematical programming community as a
proximal point algorithm. Using this approach to merge pattern matching with
engineering costs appears to be new, and has proven to be one of the most powerful
algorithmic and modeling strategies in our industrial applications. This strategy and
several variants are summarized in:

Marar, A. and W.B. Powell, “Solving Resource Allocation Problems with Incomplete
Information,” under revision for resubmission to Management Science.

Marar, A. and W.B. Powell, “Capturing Incomplete Information in Resource
Allocation Problems using Numerical Patterns”, submitted to Operations Research.

Powell-Final Progress report-1999-2001 Page 12

2.3 Software implementation

Our work in software has been focused along two dimensions: the development of a
general modeling library for dynamic resource allocation problems, and the development
of a general purpose diagnostic tool for helping to identify problems with the model.

2.3.1 The DRIiP Java modeling library

Developing simulators means writing code, and it is difficult for new programmers to
appreciate all the dimensions of the problem. For example, a common mistake is to
model something as a multicommodity flow problem initially, only to learn later that it
should have been modeled as a heterogeneous resource allocation problem (which
involves a major change in data structures). Modeling the availability of information is
even more subtle. It is very easy for a programmer to implicitly force simplifying
assumptions on internal data structures before realizing the implications.

It is possible to overcome some of these problems by imposing a modeling library on the
software development effort. New programmers are forced to adopt certain modeling
conventions that will prove useful as the project matures.

Efforts in this direction produced a java-based library that we refer to as the DRiP Java
modeling library. The library is fully described in:

Joel Shapir,o “A Framework for Representing and Solving Dynamic Resource
Transformation Problems,”Ph.D. dissertation Department of Operations Research
and Financial Engineering, Princeton University, 1999.

Special attention was given to how information is modeled:

Shapiro, J, W.B. Powell and D.E. Bernstein, “A Flexible Java Representation for
Uncertainty in Online Operations Research Models,” Journal of Computing, Vol. 13,
No. 1, pp. 29-55, 2001.

2.3.2 The PILOTVIEW diagnostic system
Once a model is up and running, we encounter the problem of diagnostics.

We have found that when we model complex systems, we often do not understand “why
the model did that.” Furthermore, we also typically find that when we theorize why the
model behaves in a certain (usually undesirable way), that we are usually wrong.

Simulations can provide errant results because of one of four reasons: 1) the data is
wrong, 2) the model is wrong (for example, the costs of decisions), 3) there is a flaw in
the algorithm, or 4) there is a bug in the software. The problem is that identifying which
of these is the culprit for a particular behavior is very difficult.

Powell-Final Progress report-1999-2001 Page 13

We have developed a general
purpose diagnostic system
called PILOTVIEW. This
system is designed to work on
general, multi-layer,
multiattribute dynamic
resource transformation
problems. As a result, we are
able to apply the system to
problems involving aircraft,
trucks or trains. We can model
two-layer problems (aircraft
and requirements; drivers and
loads; locomotives and trains)
or multilayer problems (at one
company, we are modeling five
layers: driver, tractor, trailer,
product and customer).

B % 9 owen [T it 200w
n o [L
’[II!«{«|»IMI€M
- e T Aavam O Rwvim * neey

e T

Figure 2 — Flows over an interval of time

PILOTVIEW operates on two

types of datasets. The first is an activity file that gives the flows of resources (of different
types, with different attributes) over time. There are three basic views for this data file: a
static view (plots of flows over an interval of time, shown in figure 2), an animation of
activities (showing objects moving over a map over time — Figure 3), and a graph of
activities plotted over the entire horizon of the simulation.

Perhaps the most powerful tool within PILOTVIEW is the “Pilottour” module, which
brings us right inside the optimization model itself. This is the tool that allows us to
understand why the model

made a particular decision. GReezanam m e o T
Pilottour works with a i
representation that a “resource”
will have a vector of attributes
“a”, where there may be more
than one resource with the
same set of attributes. Pilottour
displays “informational
subproblems” which represent
blocks of information that
make up a single subproblem.
Geographically, an
informational subproblem can

be the entire system (at one

4002 I

o
BRG] W BB e CF wovie
1T e 0 Dok

point in time), a single
location, or a geographical

area. Figure 4 illustrates a

. Figure 3 — Snapshot of animati ed to sh tual ts.
number of different gur nap animation, used to show actual movements

Powell-Final Progress report-1999-2001 Page 14

subproblems, each shown
as a box with two columns
of boxes (each column
representing a resource
layer). For the airlift
problem, the first column
represents types of aircraft,
while the second column is
requirements). Pilottour
allows the analyst to click
on any box or line
(representing a possible
decision) to obtain drill-
down information. We
have found that this tool
allows people other than
the original programmer of

Figure 4 — The PILOTTOUR module, showing the inside of an
optimization model, where the user can examine both the the model to analyze and
decisions that were made, and the ones that were not. diagnose problems.

2.4 Baby MASS

“Baby MASS” is a skeleton version of the airlift mobility simulator within MASS. This
simulator models the assignment of aircraft to requirements, which are specified in a
“TPFDD” (pronounced “Tipfid”, TPFDD stands for “time phased, force deployment
datasets” and contains the requirements that have to be moved. Each requirement
represents an amount of freight (and possibly passengers), along with the time at which it
has to be moved, the origin and destination, and the characteristics of the requirement
(size and weight).

Baby MASS models two resource classes: aircraft and requirements. At this stage,
aircraft are represented completely by their current location and the type of aircraft
(which brings with it the capacity characteristics of the aircraft). The requirements are
captured by their weight, origin and destination.

Once an aircraft is assigned to a requirement, it must move through a series of
intermediate airbases. Unlike the production MASS simulator, we do not immediately
move the aircraft (loaded with freight) through all the intermediate airbases to the
destination. We simply move it to the first airbase. At that point, we capture the resource
layer consisting of the aircraft loaded with the requirement. Although the logic is not in
the code right now, we could model adaptive routing, where we change the path of the
aircraft enroute as new information becomes available.

A major issue in the MASS simulator is airbase capacity. We also model airbase
capacity as a soft constraint, in that we assess an increasingly high cost when an aircraft

Powell-Final Progress report-1999-2001 Page 15

passes through an airbase when the number of aircraft exceeds a target capacity. If we
push an aircraft through an airbase that is over “capacity” (which itself is not a hard
number), we pick up the cost of this decision, which can be used in the next iteration of
the simulator. The idea is that if the airbase is heavily congested for a period of time
during the simulation, the model, in the next iteration, should try to avoid this particular
airbase.

Our decision on how to route the aircraft does not depend, then, on a simulation of the
entire route of the aircraft at the moment that it first takes off. Instead, we simulate the
path forward in time, and “discover” congestion as it occurs. The congestion is
transmitted background through the simulation through the value function
approximations, which indicate when a particular decision (such as assigning a particular
type of aircraft to a requirement that involves using a congested airbase) is a poor one.
This logic also allows the modeling of noise, such as a random aircraft failure on a
runway that creates a high level of congestion (but not all of the time). Such a random
event would not be known at the time that the aircraft is assigned, but it would be nice to
see the model exhibit the behavior of avoiding airbases that are near capacity, simply
because they are at greater risk of a high congestion cost as a result of a random failure.
We can also capture the ability of the system to dynamically reroute aircraft if
information becomes available after the aircraft has been loaded with freight to a
particular destination.

We have performed comparisons between three types of simulations:
1. The original “MASS” logic of assigning the first available aircraft to the first

available requirement.

2. Optimizing the assignment of aircraft to requirements at a particular point in time
t, allowing us to choose the best aircraft for a particular assignment, but without

considering any downstream effects.

3. Optimizing the assignment of aircraft to requirements, using value function
approximations to approximate downstream behavior.

The first two options are both myopic simulators which are completed with a single pass.
The third option requires the iterative training of adaptive dynamic programming. The
third option is the only one that exhibits the behavior of moving an aircraft back to a
home base (where requirements may originate) before a requirement has materialized
(because any dispatcher would know that once the aircraft has emptied out, that it is of no
value at its location in the theatre that the freight is being delivered to).

Powell-Final Progress report-1999-2001 Page 16

Our test dataset was a fairly small scenario that is not classified: Unfortunately, it is also
not an especially rich dataset, with fairly simple requirements. We were able to show
that the two optimizing runs (2 and 3) produced somewhat higher throughputs than the
standard MASS run. The adaptive logic shows that it could produce overall faster
throughput, without requiring the logic to “peek forward” to see if an airbase would be at

Results for Various Models:

Large Fleet
70000000
0000 Adaptive value functions ot
3 e
§ 50000000 ‘6‘{;{ P
- j

@ 40000000 Myopic assignment _ ...:". N ey
5 models et e |———VFA
9330000000" : i - == DA
>
§ 20000000
]
E
3 10000000

0 10 20 30 40 50 60 70 80 90
Time Period

Figure 5 — Througput for airlift simulator using different levels of intelligence. Experiments
were run on a small, unclassified dataset.

or over capacity.

The Baby MASS simulator has shown that the adaptive dynamic programming logic can
work for the airlift problem. The test dataset provided a limited opportunity to show that
the logic would produce faster throughputs. The intelligence behind the simulator offers
the potential of producing more realistic simulations without requiring as many hard-
coded rules to produce proper behaviors. The system can handle airbase congestion,
without requiring either hard capacity constraints, or the need to simulate forward in time
to estimate congestion. This logic is more amenable to modeling uncertainty in delays
(due to airbase problems, or flight delays due to weather) since uncertainty is naturally
captured in the value functions.

Powell-Final Progress report-1999-2001 Page 17

3. Research reports sponsored by AFOSR

The papers below summarize the research conducted in the broad area of resource
management, with a focus on a) modeling complex problems and b) solving dynamic
problems. Our research can be roughly divided along the following lines:

Section 3.1: Problem representation — These papers trace the evolution of our
development of the dynamic resource transformation problem, which is a
notational framework for a broad range of problems in resource
management.

Section 3.2: Algorithms for dynamic routing and scheduling problems — These papers
trace our work on the development of linear and nonlinear functional
approximations for general resource management problems (single and
multicommodity flow problems, and the heterogeneous resource
allocation problem), and discrete routing and scheduling problems (where
we have made contributions for both deterministic and stochastic
problems).

Section 3.3: Modeling the organization and flow of information — One of the
principles that have emerged from our research is the importance of
modeling information: how it is organized (leading to multi-agent
formulations), how it flows (leading to stochastic problems), and how it
is represented (which brings us to the problem of optimizing problems
with incomplete information).

Section 3.4: Software architecture — Complex problems need to be modeled in
software. We have developed the DRiP Java modeling library, which is a
Java-based library built around the principle of the optimizing simulator.
The library has also been designed to capture some of the important
characteristics of the DRTP modeling paradigm.

Section 3.5: Implementation research — Although the interest in the air mobility
command is on simulation and analysis, we have found significant
interest in the implementation of dynamic models in production at
companies that have sponsored Castle Laboratory. Here we summarize
both laboratory and field research that is focused on issues that arose in
field implementations.

Section 3.6 Student theses — The grant has provided direct support of the research of
several Ph.D.’s and masters candidates, as well as indirect support for
several undergraduate senior theses.

Page 18

Powell-Final Progress report-1999-2001

3.1 Problem representation
Powell, W.B., J. Shapiro and H.P. Simao, “A Representational Paradigm for Dynamic

Resource Transformation Problems,” Annals of Operations Research on Modeling
(C. Coullard, R. Fourer, and J. H. Owen, eds), Vol. 104, pp. 231-279, 2001.

"Toward a Unified Framework for Real-Time Logistics Control," Military Operations

Research, Vol. I, No. 4, Winter, 1996, pp. 69-79.

Powell, W.B. “On Languages for Dynamic Resource Scheduling Problems,” in Fleet
Management and Logistics, (T. G. Crainic and G. Laporte, eds.), Kluwer Academic

Publishers, Boston, 1998.

3.2 Algorithms for dynamic routing and scheduling problems

9.2.1 Linear value function approximations
Powell, W.B., J. Shapiro and H. P. Simao, "An Adaptive, Dynamic Programming
Algorithm for the Heterogeneous Resource Allocation Problem," Transportation

Science, Vol. 36, No. 2, pp. 231-249 (2002).
Powell, W.B. and T. Carvalho, "Dynamic Control of Logistics Queueing Networks for
Large Scale Fleet Management," Transportation Science, Vol. 32, No. 2, pp. 90-109,

1998.
Carvalho, T. and W.B. Powell, "A Multiplier Adjustment Method for Dynamic Resource
Allocation Problems," Transportation Science, Vol. 34, No. 2, pp. 150-164 (2000).

R. K.-L. Cheung and W.B. Powell, "SHAPE — A Stochastic, Hybrid Approximation
Procedure for Two-Stage Stochastic Programs,” Operations Research, Vol. 48, No. 1,

pp. 73-79 (2000)
Powell, W.B., W. Snow and R. K.-M. Cheung, "Adaptive Labeling Algorithms for the

Dynamic Assignment Problem," Transportation Science, Vol. 34, No. 1, pp. 67-85

(2000)
9.2.2 Nonlinear functional approximations
Powell, W.B., A. Ruszczynski, and H. Topaloglu, “Learning Algorithms for Separable
Approximations for Stochastic Approximation Problems,” under review at
Mathematics of Operations Research.

Godfrey, G. and W.B. Powell, "An Adaptive, Distribution-Free Algorithm for the
Newsvendor Problem with Censored Demands, with Application to Inventory and

Distribution Problems," Management Science, Vol. 47, No. 8, pp. 1101-1112, (2001).
Chen, Z.-L. and W.B. Powell, "A Convergent Cutting Plane and Partial Sampling
Algorithm for Multistage Linear Programs with Recourse," Journal of Optimization

Theory and Applications, Vol. 102, No. 3, pp. 497-524 (1999).
Topaloglu, H. and W.B. Powell, “Dynamic Programming Approximations for Stochastic,

Time-Staged Integer Multicommodity Flow Problems,” under revision for

resubmission to Operations Research.

Powell-Final Progress report-1999-2001 . Page 19

Godfrey, G. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for
Single-Period Fleet Management Problems I: Single Period Travel Times,”
Transportation Science, Vol. 36, No. 1, pp. 21-39 (2002).

Godfrey, G. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for
Single-Period Fleet Management Problems II: Multiperiod Travel Times,”
Transportation Science, Vol. 36, No. 1, pp. 40-54 (2002).

9.2.3 Stochastic routing and scheduling

Spivey, M. and W.B. Powell, “The Dynamic Assignment Problem,” under review at
Transportation Science.

Powell, W.B., W. Snow and R. K.-M. Cheung, "Adaptive Labeling Algorithms for the
Dynamic Assignment Problem," Transportation Science, Vol. 34, No. 1, pp. 67-85
(2000)

9.2.3 Deterministic routing and scheduling

Chen, Z.L. and W.B. Powell, “Exact Algorithms for Scheduling Multiple Families of
Jobs on Parallel Machines,” Naval Research Logistics. (to appear).

Chen, Z.-L. and W.B. Powell, "A Column-Generation Based Decomposition Algorithm
for a Parallel Machine Just-In-Time Scheduling Problem," European Journal of
Operations Research, Vol. 116, pp. 220-232 (1999).

Chen, Z.-L. and W.B. Powell, "Solving Parallel Machine Scheduling Problems by
Column Generation," Informs Journal of Computing, Vol. 11, No. 1, pp. 78-94,
Winter 1999.

9.2.4 Batch service processes

Papadaki, K. and W.B. Powell, “A Monotone Adaptive Dynamic Programming
Algorithm for a Stochastic Batch Service Problem” European Journal of Operational
Research, Vol. 142, No. 1, pp. 108-127 (2002).

Papadaki, K. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for a
Stochastic Multiproduct Batch Dispatch Problem” under revision for resubmission to
Naval Research Logistics.

Papadaki, K. and W.B. Powell, “A Discrete On-Line Monotone Estimation Algorithm”
submitted to Annals of Mathematical Statistics.

3.3 Modeling the organization and flow of information

Topaloglu, H. and W.B. Powell, “A Multi-Agent Decision Making Structure for Dynamic
Resource Allocation with Nonlinear Functional Approximations” under review at
Operations Research.

Marar, A. and W.B. Powell, “Solving Resource Allocation Problems with Incomplete
Information,” under revision for resubmission to Management Science.

Powell-Final Progress report-1999-2001 Page 20

Powell, W.B., “Managing Information through the Control of Information,” submitted to
OR Chronicles, ~November, 2000. Under revision for resubmission to Operations
Research.

Marar, A. and W.B. Powell, “Reducing the Optimality Gap for Dynamic Resource
Allocation Problems using Information Representation” in preparation for
submission.

Marar, A. and W.B. Powell, “An Algorithm for Minimizing the Pearson Goodness-of-Fit
Measure as an Integer Dynamic Resource Allocation Problems” or “An Algorithm
for Incorporating Incomplete Information in Dynamic Resource Allocation Problems
using the Pearson Goodness-of-Fit Measure.” In preparation for submission.

Marar, A. and W.B. Powell, “Representing Information from Regression Trees in
Resource Allocation Problems,” in preparation for submission.

Shapiro, J. and W.B. Powell, “A Metastrategy for Dynamic Resource Management
Problems based on Informational Decomposition,” under revision for resubmission to
Informs Journal on Computing.

3.4 Software architecture

Shapiro, J, W.B. Powell and D.E. Bernstein, “A Flexible Java Representation for
Uncertainty in Online Operations Research Models,” Journal of Computing, Vol. 13,
No. 1, pp. 29-55, 2001.

“An Object Architecture for Dynamic Resource Transformation Problems, (J. Shapiro
and W.B. Powell). Working paper.

The DRIiP Java modeling library: A Tutorial. Found on the web at:
http://www.castlelab.princeton.edu/DRTProot/DRTP/tutorial.html

3.5 Implementation research

Powell, W.B., A. Marar, J. Gelfand, and S. Bowers, “Implementing Operational Planning
Models: A Case Application from the Motor Carrier Industry,” Operations Research,
Vol. 50, No. 4, pp. (2002).

Powell, W.B., M.T. Towns and A. Marar, “On the Value of Globally Optimal Solutions
for Dynamic Routing and Scheduling Problems,” Transportation Science, Vol. 34,
No. 1, pp. 50-66 (2000).

3.6 Student theses

3.6.1 Doctoral dissertations

Katerina Papadaki, “Adaptive Dynamic Programming for Aging and Replenishment
Processes,” 2002. ‘

Powell-Final Progress report-1999-2001 Page 21

Arun Marar, “Information Representation in Large-Scale Resource Allocation Problems:
Theory, Algorithms and Applications,” 2002.

Huseyin Topaloglu, “Dynamic Programming Approximations for Dynamic Resource
Allocation Problems,” 2001.

Mike Spivey, “The Dynamic Assignment Problem,” 2001.

Joel Shapiro, “A Framework for Representing and Solving Dynamic Resource
Transformation Problems,” 1999.

3.6.2 Masters theses dissertations

Jayanth Marasanapalle, “Function Approximations for Integer, Stochastic Resource
Allocation Problems.” 2000.

3.6.3 Undergraduate senior theses

Edward Colburn, The Optimization of Pricing Decisions Over a Dynamic Shipping
Network Using Stochastic Gradient Algorithms, 2002.

Vazquez-Gil, Xabier, Learning to Fly: An Adaptive Dynamic Programming Approach for
the Air Mobility Command Problem, 2001.

Kevin White, A Report from the Flight Deck: An Empirical Analysis of the Fractional Jet
Ownership Industry, 2000.

4. Personnel supported
Faculty:

Professor Warren B. Powell

Professor Andrzej Ruszczynski (visiting professor from RUTCOR).
Professional staff:

Dr. Hugo Simao

Dr. Belgacem Bouzaiene-Ayari
Doctoral students:

Tony Wu (3" year)

Abraham George (2" year)

Katarina Papadaki (graduated 2002)

Michael Spivey (graduated 2002)

Poweli-Final Progress report-1999-2001 Page 22

Arun Marar (graduated 2002)

Huseyin Topaloglu (graduated 2001)

Joel Shapiro (graduated 1999)
Masters students:

Jayanth Marasanapalle

5. Interactions/transitions

3.1. Participation/presentations at meetings, conferences, etc.
Invited talks:

“Real Time Optimization for Real-World Operations,” Informs Practice Meeting,
Montreal, May, 2002.

“Adaptive Dynamic Programming for Large-Scale Resource Allocation: Solving the
three curses of dimensionality,” NSF Workshop on Learning and Approximate
Dynamic Programming and NSF Workshop on the Electric Power Industry, Mexico,
April, 2002,

“The Optimizing Simulator: Raising the ‘IQ’ of Airlift Simulations,” Informs Chapter
presentation, Air Mobility Command, Scott Air Force Base, March, 2002.

“The Optimizing Simulator: Understanding Information in the Modeling of Airlift
Operations,” Minnowbrook Conference Center, November, 2001.

“An Information-Theoretic Approach to Solving the Locomotive Power Management
Problem,” University of Linkoping, Linkoping, Sweden, March, 2001.

“Modeling Information in Dynamic Resource Management,” NJ Chapter of Informs
Meeting, RUTCOR, February, 2001.

“Adaptive Dynamic Programming for Dynamic Resource Management,” University
of Chicago, Graduate School of Business, November, 2000.

“Information Theory in Resource Management,” Seminar given at the Universite de
Montreal, February, 2000.

“Tutorial on Dynamic Resource Management,” Mathematisches F orschungsinstitut,
Oberwolfach, Conference on Traffic and Transport Optimization, Germany,
November, 1999.

Powell-Final Progress report-1999-2001 Page 23

“Optimization Models for the Motor Carrier Industry: An Emerging Information
Technology,” Truckload Motor Carriers Conference, Birmingham, September, 1999.

“Dynamic Programming Approximations in Multi-Stage Linear Programming,” New
World Vistas Conference, Sponsored by Air Force Office of Scientific Research,
New York, May, 1999.

Plenary speech: “An Information Theoretic Approach to Dynamic Resource
Management,” Optimization Days, Montreal, Quebec, May, 1999.

“Dynamic Programming Approximations for Multicommodity Network Flows:
Deterministic and Stochastic Problems,” DIMACS Workshop on Logistics, Rutgers,
February, 1999.

“Tutorial: Dynamic Optimization Models for Complex Operations,” Seminar,
University of Montreal, Montreal, Quebec, February, 1999,

Conference presentations:

“An Information Theoretic Model of Locomotive Operations,” IFORS 2002, Scotland
(with Belgacem Bouzaiene-Ayari).

“A Multilayered Resource Scheduling Problem,” IFORS 2002, Scotland (with Hugo
Simao and Raymond Cheung).

“An Information Theoretic Approach to Modeling Car Distribution,” IFORS 2002,
Scotland (with Huseyin Topaloglu and S. Melkote).

“Solving a Large Scale Driver Management Problem Using Informational
Decomposition,” IFORS 2002, Scotland (with Hugo P. Simao).

“Tutorial: Emerging Developments in Adaptive Dynamic Programming for
Stochastic Resource Management,” Informs National Meeting, Miami, November,
2001.

“A Multi-Agent Approach for Stochastic Multicommodity Flow Problems with
Applications in Fleet Management,” Informs National Meeting, Miami, November,
2001.

“A Dynamic Optimization Model for Locomotive Management based on Information
Modeling,” Informs National Meeting, Miami, November, 2001.

“Optimizing Complex Operational Problems under Incomplete Information, with an
Application to Locomotive Power Management,” TRISTAN IV, Azores, June, 2001
(with A. Marar and B. Bouzaiene-Ayari).

“The Multi-layered Resource Scheduling Problem,” TRISTAN IV, Azores, June,
2001 (with H.P. Simao).

Powell-Final Progress report-1999-2001 Page 24

“Tutorial: Adaptive Dynamic Programming for Dynamic Resource Management,”
TRISTAN IV, Azores, June, 2001 (with H. Topaloglu).

“Dynamic Programming Approximations for Time-Staged Stochastic Integer
Multicommodity Flow Problems,” Informs National Meeting, San Antonio,
November, 2001 (with H. Topaloglu).

“The Dynamic Assignment Problem,” Informs National Meeting, San Antonio,
November, 2001 (with M. Spivey).

“Adaptive Dynamic Programming for Real-Time Locomotive Management,” Informs
National Meeting, San Antonio, November, 2001 (with Belgacem Bouzaiene-Ayari).

“Adaptive Dynamic Programming Methods for Aging and Replenishment Problems
with Applications to Inventory Management and Vehicle Dispatching,” Informs
National Meeting, San Antonio, November, 2001 (with K. Papadaki).

“Tutorial: Dynamic Resource Management — Problems, Models and Algorithms,”
Informs National Meeting, San Antonio, November, 2001.

“Dynamic Programming Approximations for the Dynamic Assignment Problem,”
Informs National Meeting, Salt Lake City, May, 2000 (with M. Spivey).

“Adaptive Dynamic Programming for Locomotive Scheduling,” ,” Informs National
Meeting, Salt Lake City, May, 2000 (with Belgacem Bouzaiene-Ayari).

“Structural Dynamic Programming for Dynamic, Multicommodity Flow Problems in
Transportation,” Informs National Meeting, Salt Lake City, May, 2000 (with H.
Topaloglu).

5.2. Consultative and advisory functions

I have given presentations each year on this research to the Air Mobility Command. I
also met with Mike Strickland who is a consultant working on the new AMOS simulator,
and we are trying to mimic the AMOS dispatch rules with one of our decision functions.
This will allow us to make comparisons directly to the existing AMOS logic.

5.3. Transitions

Our transitions have occurred along three lines:

o Meetings with analysts at the Air Mobility Command and their subcontractors for
rewriting the old MASS simulator (new name: AMOS).

o Direct implementation of ideas through projects with the corporate partners of
CASTLE Lab.

Powell-Final Progress report-1999-2001 Page 25

o Licensing of software through local consulting firms for use in systems for their
clients. CASTLE Lab has relationships with Transport Dynamics, Inc. (TDI), and
Princeton Consultants, Inc. (PCI).

Specific transitions to the industrial partners of CASTLE Lab include:

1

Transition: Operational, tactical and strategic planning of locomotives. This
system uses the optimizing simulator concept, and in particular makes heavy
use of techniques for modeling incomplete information through low
dimensional patterns. The system was recently approved for production at
Norfolk Southern Railroad, making it the first successful production
optimization mode! developed for operational use in North America.

Recipients: Norfolk Southern Railroad, which uses the system both for
strategic planning of the fleet size, and short-term tactical forecasting of
surpluses and deficits.

Burlington Northern Sante Fe Railroad, where the primary focus is on routing
locomotives to maintenance facilities, where they have to arrive at a particular
time.

Transition: We have been working for years to developing an operational
routing and scheduling system for the multilayered resource scheduling
problem. This has been applied to the routing and scheduling of drivers,
tractors, trailers, product and customer tanks. This system is now in
production and is available for schedulers to use on demand.

Recipient: Air Products and Chemicals

Transition: Forecasting of time series activities with multiple calendar effects
using hierarchical aggregation.

Recipient: Yellow Freight System, Norfolk Southern Railroad

Transition: A driver scheduling system for large-scale less-than-truckload
motor carriers using informational decomposition. We combined the adaptive
learning techniques for coordinating multiple agents along with low
dimensional patterns for capturing incomplete information. The system is
now being used to perform short term tactical forecasts of movements of
drivers.

Recipient: Yellow Freight System

Transition: A real-time routing and scheduling algorithm for short-haul
truckload trucking using an adaptive labeling algorithm. This is the first real-
time system which can produce tours (where a truck covers multiple tasks)
running for fleets with several hundred trucks.

Powell-Final Progress report-1999-2001 Page 26
5. Transition:
Recipient: Triple Crown Services.

Research results licensed to Transport Dynamics are now incorporated into optimization
models TDI sells to truckload carriers (forecasting and real-time routing and scheduling)
and less-than-truckload motor carriers (which requires forecasting as well as load
consolidation). These systems are now helping to run FedEx Ground, FedEx Custom
Critical, Watkins Motor Lines, and de Boer Truckline. These are now successful
commercial product lines.

Princeton Consultants undertakes custom projects, and is currently involved in a project
to implement an optimizing-simulator based solution to Donnelley, a $5 billion printing
company.

Powell-Final Progress report-1999-2001 Page 27

Technical appendix

A.1 Overview

Computer models that simulate physical activities have long proven to be a powerful
analysis tool for designing complex operations. For example, the MASS simulation
system has been an effective tool for the analysis group at the Air Mobility Command to
estimate throughput and response times, and to analyze the effects of different airbases,
aircraft characteristics and aircraft routing policies on system performance. This analysis
has traditionally been performed with a classical simulation model, developed over the
years by Tom Kowalsky and recently updated by an outside contractor.

The power of simulation is its flexibility. Its weakness is that a) decisions are typically
made using rule-based functions that often have to be redesigned to produce the right
behaviors for a given dataset, and b) the simulator does not readily provide a measure of
which resources are constraining the system. As a result, a fair amount of trial-and-error
is needed to determine the changes in inputs that produce the most effective
improvements to airlift responsiveness for a particular scenario. Classical simulators in
particular struggle with problems in logistics where the dimensionality of a decision can
be high. For example, in a manufacturing setting, it is often the case that “decisions” are
very simplistic (for example, well-defined rules may determine which job is handled next
by a particular machine). By contrast, logistics problems are often characterized by
vectors of decisions (for example, which of 10 aircraft should handle which of 5 different
requirements, producing a vector of decisions with 50 elements).

A competing technology is math programming (and specifically, linear programming)
which is particularly adept at handling vectors of decisions. Furthermore, after finding
the optimal solution, an LP solver will also produce dual variables for resource
constraints, which provide an indication of which resources (aircraft, airbases, fuel,
airspace capacity) would provide the biggest impact if they were increased. LP solvers
also provide a sense of “optimality” by providing a formal method of determining the
best set of decisions. The intelligence behind the optimization logic allows the system to
adapt more quickly to different datasets. Optimization logic, however, requires
formulating an “objective function” which provides the total cost for a particular set of
decisions. The objective function provides a formal mechanism for determining when
one decision is better than another, but the quality of the decisions depend, on course, on
the degree to which the objective function accurately reflects desired behaviors. Often,
the “costs” in an objective function are artificial bonuses and penalties designed to
produce a specific behavior.

Just as important, optimization models require that the dynamics of the system be
described using systems of linear equations. Engineers modeling complex systems often
find it difficult to capture the rules that govern the evolution of real systems using
systems of equations. It is typically far easier to capture the difficult physics of real
operations using the type of rule-based logic that simulation models provide.

Powell-Final Progress report-1999-2001 Page 28

Needless to say, the pros and cons of each approach has spawned a healthy debate.

This document provides a summary of research that overcomes this debate through a
concept we refer to as an “optimizing simulator.” We are going to describe a technology
that offers the flexibility of a simulator, and yet which can compete against linear
programming solvers. As with optimization algorithms, we use a cost function to
determine which simulation is best, but in contrast with the classical use of simulation,
we provide an easy way of incorporating rule-based behavior (a merger of “Al” and
“OR”). We do not have any difficulty handling the large dimensionality of decision
vectors that typically characterize problems in logistics. Finally, we use the same rule-
based logic for representing the evolution of system dynamics as is found in any
simulation package.

A.2 The optimizing-simulator concept

The optimizing-simulator is based on traditional concepts of simulation. It is useful to
first summarize the elements of a simulator (but in our notation), which we do using the
airlift flow problem as an example. We then introduce how we would solve the airlift
flow problem as an optimizing simulator.

A.2.1 The basic simulator

A traditional simulator steps through time, making decisions and modeling the evolution
of the system as new events arise. The simplest 51mu1ators do not actually have to

“make” decisions, but rather simply model |
the physics of the system. These systems
evolve as a result of two inputs. The first
we call “knowledge” which is information
from an exogenous source. We let:

k, = The “knowledge” that arrives in

time t.

Let:

K, = The “knowledge base” at time t.

Given what we know (K,) at time t, we

next make decisions. Let:

= The vector of decisions at

tme L. Figure A.1 — Illustration of classical simulation

logic stepping through time.

Powell-Final Progress report-1999-2001 Page 29

It is useful to think of x, as (a random variable) representing exogenous information,
while x, is a decision, which represents endogenously controllable information. Our

system evolves through a sequence of exogenous and endogenous information, which we
may represent using:

(K()>xo:K1,xlsK23x23"')

We are not going to worry about where the exogenous sequence (|)50 comes from, but

we are very interested in how we make decisions. We can represent the process of
making decisions using a function that we denote by X", which we can think of as a
mapping from what we know at time ¢ to a vector of decisions. To capture what we
know, assume that we have a knowledge updating function that handles the update of
what we kow:

K

K
1+1 <« U (Kt’xt’Kl)
Our decision function, then, is a mapping from what we know at time t to a set of
decisions:

X"(K,)—x,

The evolution of the system can be completely specified through the knowledge update
function U* () and the decision function X*(). We assume that the knowledge updating
function is specified as part of the problem. By contrast, there are many different ways of
making decisions. For this reason, we define a set of policies 11, and let (X™),7 €I to
be a family of decision functions, and our challenge is finding the best function (or
policy).

In classical simulators, both the knowledge update function and the decision function are
typically rule-based. This is especially difficult when decisions come in vectors.
Consider, for example, the situation faced by the airlift flow module of MASS, which is
depicted (with a little imagination) in figure A.1, which shows a set of aircraft we can
choose from on the left, and a set of requirements (such as freight) that has to be moved
on the right. Each aircraft, and each requirement, has a set of attributes. An aircraft will
have attributes such as location, capacity, ability to handle oversized freight or
passengers, speed, range, and landing requirements (such as length of runway).
Requirements have attributes such as origin and destination, weight and volume, oversize
characteristics, passengers, and the time at which it is available and when it has to move.
If we face the problem of choosing how to assign four aircraft to three requirements
(keeping in mind that it is common to need more than one aircraft to move a
requirement), we have 3* =81 possible decisions we can make (a number that grows
quickly with the number of aircraft and requirements that we want to consider at one
time). Not only do we need a way of determining when one decision is better than

Powell-Final Progress report-1999-2001 Page 30

another (an objective function) we also need a very fast way of sorting through these
different combinations (enumerating them is not an option).

The original MASS simulator resolves this issue very simply. The aircraft and
requirements are sorted in terms of order of availability. The system then takes the first
aircraft that is available, and then chooses the first available requirement, and attempts to
assign one to the other. The difficulty is determining whether this assignment is possible.
The aircraft might be in, say, New Jersey, while the requirement may have to be moved
from the Philippines to Southeast Asia. Getting the aircraft from New Jersey to the
Philippines will require stopping and refueling at several intermediate airbases. These
airbases may be at capacity. It is necessary to run a short simulation to determine when
the aircraft will reach each airbase, and whether it has the capacity to handle the aircraft.
“Capacity” is itself a fairly complex issue, since it may reflect the ability to land and store
the aircraft, as well as refueling and maintenance capacity. Ifit is decided that the
assignment is possible, then this decision is made. There is no attempt to consider
whether any other decisions are possible. Ifit is determined that an assignment is not
possible, the simulator would try the second requirement in the list, and so on (the latest
revision of MASS keys on a requirement, and searches down the list of aircraft for the
first one that can handle the requirement).

Thi sis a test of the line break logic I want to see if it goes all the way to the right column
before breaking.

A.2.2 The airlift flow problem as an optimizing simulator

The difference between a classical simulator and an optimizing simulator is in the
decision function, X" . There are two key differences. First, in a classical simulator, the
decision function is rule-based. It uses a set of “If... THEN ... ELSE” rules to map from
what we know (X,) to a decision (which is rarely a vector). The first step in an
optimizing simulator is that we require (just as an optimization model would) that we use
a cost function that evaluates a decision. Let:

C,(x,|K,) be the cost of making decision x, given our knowledge K, .

Since the use of X, is implicit, we will often write the cost function as C,(x,).

Furthermore, we can usually assume that the function is linear, allowing us to write
C,(x,) = ¢,x, which means that it costs twice as much if we move two aircraft as it does if
we move one (with some creative modeling, we can retain our seemingly linear structure
and allow the cost of moving the second aircraft to be more than the cost of moving the
first). We would have to find x, subject to basic constraints such as flow conservation
(an aircraft can only do one thing at a time) and limits on flows (such as limits on how
many aircraft can land at an airbase at the same time). We would express these limits
using:

Powell-Final Progress report-1999-2001 Page 31

where we let:

R, =Vector of “resources” available at time .
For our purpose, a “resource” is anything that we are acting on that constrains the system. This would
include aircraft and pilots, as well as the requirements (freight and passengers to be moved). We might

also require that x, take on integer values (to prevent us from assigning half of an aircraft to a

requirement). In general, we can let:

X, (R)) = The feasible region.

We can determine what to do by solving:

min c,x,
xeX(R)

We can now define our decision function. Recall that “arg min” means “the argument
that minimizes” a function, our decision function can be written:

Powell-Final Progress report-1999-2001 Page 32

X, (K,):argXIgll(r}e’)c,x, (D
The simplest type of optimizing simulator, then, could be written as:
min e X (K,) 2

This is a simple myopic simulator. We require the decision function to depend purely on
what we “know” at time t, represented by K,. For the air mobility problem, we require
that a cost function be developed. Solving equation (1) for the air mobility problem is
very easy; it is a small network problem that can be solved using standard optimization
algorithms very quickly, once the costs are calculated. Of course, this is the challenge:
determining the “cost” of assigning an aircraft to a requirement requires running a small
simulation to determine whether any airbase constraints are violated. We have an answer
to this issue, but need to turn to it later.

It is natural to ask “Just what are we minimizing over?” That is, what is our set of
policies IT over which we are choosing? This simulator is particularly simple. For a
given set of costs, there is only one “policy” which is to solve equation (1).

The problem with our myopic simulator is that it does not consider the impact of
decisions made now on the future. We view decisions as impacting the vector of
resources in the future. To avoid adding unnecessary complexity at this stage, we are
going to model decisions x, as acting on the resource vector R, to produce a resource

vector R,,, for the next time period, allowing us to write R, (x,). Now assume that we

1+]
have a function V,,;(R,,,(x,)) which captures the value of having resource vector R,,,(x,)

at time t+1. We defer until the next section exactly how we are going to find the function
V.. (R, (x,)). Using this function, we can write our decision function as:

Xtﬂ (K19 V;-H) = arg 1’1’/\1,11’}2)ctxt + Vl+1 (Rt+1 ('xt)) (3)

xeX, (R,

In our view, this is a different class of decision functions. Let IT” be the class of myopic
policies which have the basic form of equation (1). These policies depend purely on the
knowledge K,. If we define knowledge as data from an exogenous source, the value
functions ¥, represent a different class of information that is distinctly different than our
knowledge, K,. Rather than being provided exogenously, the value functions are
calculations that we are going to undertake ourselves (endogenously).

It is useful to distinguish between knowledge, which is based directly on data that arrives
exogenously, and information, which is data that is used to make a decision. We argue
that the value functions ¥, represent information (they are used to make a decision) but
not knowledge. Since equation (3) is based on the principles of dynamic programming,
we refer to policies that depend on value functions as the set I1>”. Let

Powell-Final Progress report-1999-2001 Page 33

I, =The set of data used to make a decision,
X[(1,) = The decision function given the information set /,.

We now claim that we can create different classes of policies by creating different classes
of information. So far, we have seen two classes of information (X, and V). Although

beyond the scope of this document, we claim that there are four classes (and claim that
this is all there are). For now, this is enough.

If we return to equation (2) using our new information class, we observe that the problem
of choosing the best policy 7 €I is the same as finding the best set of value functions

()10 - The problem now is: what should these functions look like, and how do we find
them? For this, we turn to the concept of adaptive dynamic programming.

A.3 Adaptive dynamic programming

“Adaptive dynamic programming” is a name that we have given to a particular method
for solving approximate dynamic programs. It falls in the general class of techniques
referred to as “forward dynamic programming” which step forward in time, as opposed to
classical “backward dynamic programming” methods which step backward in time.
Examples of forward dynamic methods include “neuro-dynamic programming”
(Bertsekas and Tsitsiklis [1996]) and “reinforcement learning” (Sutton and Barto [1998]).
These approaches, however, are not able to handle the types of operational problems that
arise generally in resource management, and specifically in the area of transportation and
logistics.

We begin our presentation with a review of forward dynamic programming techniques.
We then discuss the “three curses of dimensionality” that arise when solving problems in
transportation and logistics. Finally, we present a novel approximation strategy that
overcomes the “three curses.”

A.3.1 An introduction to forward dynamic programming

The first step in our solution approach is to develop a decision function that captures the
impact in the future of decisions made at time #. Normally this could be accomplished
using the optimality equations of dynamic programming. Assume that we have a system
in state S, and let V,(S,) be the value of being in state §,. Under the assumption that the

state variable captures all relevant history of our process, the value functions are
determined by:

V(S)= min cx+E{V,(Su(x)IS,} @)

xlEXl(I)

Equation (4) can in principle be solved using backward dynamic programming. Assume
that V,.(S;) is known for a terminal period T. We can then find all remaining functions

Powell-Final Progress report-1999-2001 Page 34

V.(S,) by stepping backward through time using equation (4). This process requires
solving equation (4) for each possible value of S, (the assumption is that S, is discrete).
The problem with this approach is that if S, is a vector, then we encounter the well-
known curse of dimensionality: there are simply too many states.

In recent years, considerable attention has been given to the techniques of forward
dynamic programming. These have been popularized in the textbooks by Bertsekas and
Tsitsiklis [1996], under the label of “neuro-dynamic programming,” and Sutton and Barto
[1998], under the label of “reinforcement learning.” These techniques mitigate, but do
not eliminate, the curse of dimensionality of the state space by solving equation (4) by

stepping forward through time using an approximate value function. Let I;'," (S,) bean
estimate of the value of being in state S, at iteration ». Then, the basic forward dynamic
programming algorithm works as follows:

Step 0: Initialize 17,0 (S,), and pick an initial state S,
Set the iteration counter n=0.
Set the maximum number of iterations N .
Step 1: Set S; =S,, and select @" € Q.
Step 2: (Forward pass)
Do for t=0,1,...,.T-1:
Step 2.1 Let] =k, (@").
Step 2.2: Solve:

I7tn+] (Stn,w,n) — mlg)C1(a)t")xt +E{I},:1 (S1+1 (xt),a)tn) I S,"} (5)

Let x; be the optimal solution of equation (5).
Step 2.3: Update the state of our system using:
Sia = £,(S7,x,0f)

where f,(S,x,®) is the transfer function describing the dynamics
of our system.

Step 3: (Backward pass):

Powell-Final Progress report-1999-2001 Page 35

Do for t=T-1,T-2,...,0:
Update the value functions:
I}lnﬂ « UV(I;;n’I%nH,Stn)

Step 4: If n< N, set n <~ n+1 and return to Step 1.

Our presentation of the forward dynamic programming algorithm has been intentionally stated in the
context of a finite horizon problem, since this is how the air mobility problem (and every other resource
management problem that we have ever faced) needs to be formulated. Note that the textbooks by both
Bertsekas and Tsitsiklis as well as the Sutton and Barto are presented in the context of steady state
problems. The transition to finite horizon problems is straightforward but nontrivial, and create practical
problems that are not addressed in these presentations.

A.3.2 The three curses of dimensionality in resource management

For resource allocation problems that arise in operational problems such as the airlift
mobility problem, the problem with equation (4) is that there is not one curse of
dimensionality, but three! These are:

1. The state space — If S, is a vector, then we do indeed suffer from the
problem of having to determine ¥,(S,) for each element of an
exponentially large state space.

2. The outcome space — Random variables (future demands, weather delays,
equipment breakdowns) typically arise in vectors, sometimes of large
dimensionality. The expectation operator in (4) requires summing over all
possible values of the random vector. As with the state space, the number
of potential outcomes is exponentially large.

3. The action space — Operational problems are characterized by “actions”
that come in vectors, as illustrated in figure A.2. In backward dynamic
programming, it is expected that equation (4) will be solved by computing
the argument for each possible value of x, in the feasible region X (S,).

Again, if x, is a vector, then the size of X (S,) becomes exponentially
large.

The dynamic programming literature has tended to focus on the problem of large state
spaces; we have found the biggest difficulty is in the outcome and action spaces. We
eliminate the problem of the outcome space by reformulating the optimality recursion
around a concept we refer to as the incomplete state variable. We solve the problem of
the large state spaces by using continuous functional approximations. We solve the
problem of large action spaces by choosing the structure of our functional approximations
carefully.

Powell-Final Progress report-1999-2001 Page 36

A.3.3 Solving the three curses of dimensionality

We solve the three curses of dimensionality using two key strategies. First, we formulate
our optimality equations using the concept of an incomplete state variable. Then, we
replace the value function with a suitably chosen continuous approximation that helps us
to retain the structure of the original myopic decision problem.

A.3.3.1 The incomplete state variable

Earlier, we represented the sequence of exogenous and endogenous information as the
sequence:

(K> X9, K3 X1 Kyy Xy 500)

When modeling dynamic systems, it is common to represent the concept of the “state” of
a system. Often overlooked is that there are three concepts of the “state” of a system: the
state of our knowledge, the state of the resources, and the state of a single resource in the
system. To avoid any confusion, we let K, represent the state of our knowledge, and we

let:

R,, = The number of resources with attribute a € A

R, = The state of our resources

= (R‘”)aeA

The vector R, is our system resource state vector, while a € A is the attribute (state) of a

single resource. We find it is useful to define these concepts because different
communities will use the word “state” to mean any one of these three concepts. We use
the variable S, when we wish to refer to the state in a generic way, without

distinguishing whether we are referring to the more general concept of knowledge, or the
more specific concept of resources.

It is customary to represent the state of the system as consisting of what we know
immediately before we make a decision. In this case, we would have:

(K Xg5 K515 X1, K538, Xy 5000)
This definition leads to the classical optimality equations given by:

] .
VS = min cx+E{V, (SIS, |
We have found it more useful to refer to this version of a state variable as the complete
state variable, which we denote by S;. We then use the simpler S, to denote the
incomplete state variable that is the information we know just before the information

arrives in time ¢#. This implies that our sequence of information and states would be
represented by:

Powell-Final Progress report-1999-2001 Page 37

+ +
(Ko, X0, Sy, 51,8, %, 85, K,,85 1 X, ,...)

In this case, the optimality equations (formed using the incomplete state variable S,) are
given by:

7, (5)=E{ min o3 47,u(S.(i) 15,)

X €X (S,

Note that the expectation operator is now in front of the optimization operator. The
reason is that our state variable no longer has all the information we need to make a
decision.

A.3.3.2 Approximating the value function

Our next step is to simply drop the expectation operator, and solve the problem for a
single sample realization:

V,(S,,0)= min cx(w)+V, (S, (x,0,))

! x, €X,(S,,w) t+

Notice that we are solving the problem for a single realization of the exogenous
information in time period t, represented by w, = k,(@). Had we used our complete state

variable and used the same trick, we would have to solve the problem for a single
realization of @,,, = «,,,(@). This means that we are making a decision in time t

assuming that we know what would happen in time t+1.

The second step is to replace the value function ¥,,,(S,,,) with an approximation. We
specifically require that our approximation be a continuous function of the resource state
vector, R,,. Thus, we replace V., ,(S,,,) with I%H (R,,,) , giving us the equation:

7S, @) = min @)+ V(R (x,0)
(3 1 (R4

The last step is to choose reasonable functional forms for the approximation V,H (R.)-
We have been experimenting with two specific forms:

I}I+I(Rt+l) = Z vAa‘t+1Ra,t+l (6)
aehA
I}H-I(Rtﬂ) = Z I}a,t+1 (Ra,t+1) (7)

aeA

The first approximation is linear, while the second is nonlinear, separable. In particular,
we have used piecewise linear, separable functions. Our work has shown that linear
approximations are the easiest, but do not produce the best results. Separable, nonlinear

Powell-Final Progress report-1999-2001 Page 38

(piecewise linear) appears to be providing exceptionally good results. While nonlinear
approximations do introduce added complexity, the stability of these solutions and the
quality is quite good.

A.3.3.3 Exploiting structure

Solving the equation:

VIS m) = min cx, (@) + V(R (%)

x €X,(S,,
generally requires exploiting underlying problem structure. The basic myopic problem:

VS, ,0)= min cx(w,)
(S,,@)

(] '

can be a sort, an assignment problem (such as assigning aircraft to requirements), a
transportation problem, an integer multicommodity flow problem, or a discrete routing
and scheduling problem. We make the assumption that we have an algorithm to solve
this problem, which is typically not too difficult because it is only for one point in time
(solving problems simultaneously over an entire planning horizon can be exceptionally
difficult; solving only one time period is often quite easy). When designing a functional

approximation 17,2] (R1(x,,@,)), the goal is to choose a form that does not destroy the

inherent structure of the one-period problem. Linear approximations of the form (6)
never destroy problem structure. Separable nonlinear approximations (equation (7))
work very well for single commodity resource allocation problems since they retain
network structure. In the context of multicommodity flow problems, linear
approximations will produce pure network subproblems, while nonlinear approximations
produce multicommodity flow problems (which are relatively small).

A.4 The dynamic resource transformation problem

Our work on optimizing simulators has paralleled the formulation of a very general
problem class called a dynamic resource transformation problem. This problem class
represents an effort to identify the major elements of a resource management problem,
and to provide a notational system that elegantly handles the complexities of real-world
operations. A detailed summary of this problem class is given in reference [1].

A.4.1 Elements of a DRTP
A “DRTP” consists of three primary dimensions:
Resources || Processes || Controls

Each of the three primary dimensions consists of specific subdimensions. A complete
notational system is provided. The representation introduces several novel modeling
elements:

Powell-Final Progress report-1999-2001 Page 39

The introduction of an attribute vector instead of the more common
“multicommodity flow” formulation that is popular in the literature). This gives
way to the heterogeneous resource allocation problem which is a much more
flexible notational system for handling complex resources. This dramatically
simplifies modeling problems of increasing complexity without adding notational
complexity.

The concept of resource layering, whereby resources may be coupled (such as
aircraft with pilot) to produce resources with a richer set of attributes.

The “modify” function which is a single function which captures all of the
physics of a problem Similar to the transfer function of simulation, the modify
function more naturally works at the level of individual resources.

Explicit modeling of not only the flow of information (common to any simulator)
but also the organization of information and decisions.

Formalization of four classes of information, which produces four classes of
optimization algorithms.

Introduction of the use of hierarchical aggregation for dynamic resource
management problems. Aggregation brings into play the explicit representation
of information, a dimension that is typically overlooked in modeling, which
typically works at a single level of aggregation. DRTP’s will in general use three
levels of aggregation at the same time (although more levels can in principle be
used).

In addition, we have introduced an algorithmic metastrategy for solving general DRTP’s.
This metastrategy is based on the decomposition of problems based on information
subproblems, and the introduction of a novel communication strategy based on the use of
nonlinear CAVE approximations.

A.4.2 Major problem classes

Resource allocation problems come in a variety of flavors. Important dimensions
include:

1.

The information profile — Our work has primarily focused on problems
where there is limited advance information. When all information is known in
advance, we typically face very large-scale optimization problems. Many real
problems (which encompasses the airlift problem as well as most freight
transportation problems) involve information that arrives over time.

Resource attributes — Resources may have a single static attribute (such as
product class), a single dynamic attribute (such as the location of an aircraft),
both a static and dynamic attribute (different types of aircraft spread across

Powell-Final Progress report-1999-2001 Page 40

different locations), or multiple attributes (the maintenance or fuel status of the
aircraft, what freight it is carrying, and the characteristics of the crew that is
piloting the aircraft).

3. Resource layers — The simplest problems are single layer problems
(moving aircraft around or delivering products to customers); in transportation,
many problems can be reasonably solved as two layer problems (such as aircraft
and requirements, or pilots and flights). Harder problems have multiple layers.

Our work has focused on problems with highly dynamic information processes, and
relatively complex attributes (we have found that it is most natural to simply view
resources as having a vector of attributes, rather than starting with the so-called simpler
single and multiple-commodity flow problems). However, we have started with single
and two-layer problems, and have found that this has been a significant issue that is worth
a brief discussion.

A.4.3 Resource layering

For the airlift problem, aircraft and requirements are both resource classes, and since we
have to model an aircraft when it is moving a requirement, we have to model the resource
layer of aircraft with requirement. Requirements are a passive layer (we cannot move a
requirement without an aircraft), so this is approached as a one-layer problem. If we
could move requirements on aircraft not controlled by the AMC (e.g. charter aircraft),
then this problem would have two active layers. If we wanted to simultaneously model
crews, we would effectively have a three layer problem.

If a problem has a single resource class that we are managing (such as aircraft or pilots)
and they have to perform tasks that must be performed at a particular point in time, then
we have a pure single layer problem. If both layers are active (we can manage the
aircraft, but we also have to perform functions with the requirements), then we have two
active layers, and this is a true two-layer problem. Many problems involve a single
active layer (such as the aircraft) and a single passive layer (you can act on a requirement
by moving it with an aircraft, and if you do not move it, it just sits there, but you cannot
directly act on the attributes of the requirement without the aircraft). The requirements
are a passive layer because you cannot act on them, but if you do not move them, then
they are still there the next time period. These problems arise frequently in practice, and
they can be modeled as one or two layer problems (depending on how precise you want
to be).

A.4.3.1 Single-layer problems:

A single layer problem has a single resource class that we are managing. Single layer
problems arise when we are managing aircraft to move requirements, scheduling pilots to
handle flights, or moving trucks to move loads. These problems come in three important
flavors:

Powell-Final Progress report-1999-2001 Page 41

1. Single commodity problems
2. Multicommodity problems

3. Heterogeneous resource allocation problems

Single commodity problems involve a single type of resource (for example, all the aircraft are the same),
which are characterized only by a state variable (such as their location). Multicommodity problems are
characterized by both a state (location) and a class (type of aircraft). Heterogeneous resource allocation
problems are characterized by a vector of attributes, some of which may be static while others are dynamic.
We have found that this is an especially important class. The complication here is that the space of
potential attributes for complex resources can be extremely large (especially those involving people or
complex equipment such as aircraft or locomotives). Special strategies have to be formulated to handle this
problem.

A.4.3.2 Two-layer problems:

Two layer problems first arise in problems such as the airlift mobility problem where
there is a single active resource class (the aircraft) and a single passive resource class (the
requirements). Imagine now that it may be necessary to move freight from one location
to the next, unload it, and then reload it on another plane to be moved over a subsequent
leg. Furthermore, part of our problem is determining which sequence of airbases a
requirement should be moved through to get to the final destination.

In this setting, we have to manage both the aircraft and the requirements. This is a
common example of a two-layer problem. An added complication arises when the
requirements vary not only in terms of their physical characteristics (which affects which
aircraft is best to move the freight) but also in terms of importance. As a result, it may be
necessary to leave a low priority requirement on the ground while an aircraft waits for a
higher priority requirement to arrive before it can be moved. To capture this behavior,
the model needs to think about not only the future impact of moving an aircraft, but also
the future impact of moving a requirement. For example, it might be possible for a
requirement to get to a destination by moving through airbases 1-2-3 (where the freight is
unloaded at 2), but if 2 is heavily congested, it might be better to move the requirement
over the route 1-4-3, taking advantage of available capacity at 4.

We have studied three classes of two-layer problems:

e Resource allocation problems serving tasks with time windows (but where a
task vanishes after being moved)

e Combined fleet management and traffic assignment problems (where
customer demands have to be routed through multiple locations before
arriving at the destination).

e The dynamic assignment problem

The dynamic assignment problem arises when you have a set of resources (such as pilots)
and a set of tasks (such as flights to be served) and we have to dynamically assign

Powell-Final Progress report-1999-2001 Page 42

resources to tasks. Further assume that both resources and tasks have potentially
complex sets of attributes that affect the value of assigning a resource to a task).

A.4.3.3 Multi-layer problems

Many real problems come not in one or two layers, but three or more. For the airlift
problem, an example is the modeling of aircraft, crews and freight. We could create a
fourth layer by adding fuel.

We have solved a five layer problem (driver, tractor, trailer, chemical product, and
customer tank) for a chemical manufacturer, Air Products and Chemicals. The problem
was solved in a general way, and the algorithm, in principle, could be adapted to other
multilayer problems. This work has not yet been formally documented.

A.5 Experimental results

We have tested this strategy on a broad range of deterministic and stochastic datasets that
we use in CASTLE Laboratory. The ideas have also been tested on real-world problems
such as the driver management problem at Yellow Freight, and the locomotive
management problems at Norfolk Southern and Burlington Northern Sante Fe railroads.
In this section, we focus purely on the laboratory datasets, since the real world datasets
bring other dimensions of our technology into play.

A.5.1 Convergence of the CAVE algorithm

Much of our work uses an important foundational algorithm called the CAVE algorithm,
which uses a sequence of sample gradients of a function to build up a piecewise linear,
concave approximation. This year, we finally proved that this algorithm is convergent.

25

20
—
7]
+
bt
£
1
ORE — Exact
=
& -a- 1 lter
,—:“’ B ~2~ 2 lter
> o -5 Iter
s10+ S~z
g ——10 lter
Z ——15 Iter
5 ——20 Iter
L

05 4 e

rd
4/
0.0 f : } } } } } : '
0 1 2 3 4 5 6 7 8 9 10

Variable Value, s

Figure A.3 — Convergence of the CAVE algorithm to a nonlinear function using a
series of sample gradients.

Powell-Final Progress report-1999-2001 Page 43

Figure A.3 demonstrates the progress of the algorithm, starting with a single line, and
iteratively improving the approximation of a nonlinear function.

We now have a theoretical proof of convergence of the CAVE algorithm (the report is in
preparation). While this represents an important milestone (which proved to be
surprisingly difficult), of greater practical importance is the fast rate of convergence
exhibited by the algorithm.

A.5.2 CAVE on two-stage allocation problems with no substitution

We use the CAVE algorithm to produce separable, piecewise linear approximations of
the value of resources in the future. This is one of our most powerful tools for solving
resource allocation problems. We illustrate our technique on a series of problems of
increasing complexity. Figure A.4 is the simplest example. Here we illustrate the
assignment of four different types of aircraft to different locations, after which they have
to be assigned to demands (that are initially unknown). In this version of the problem we
assume that once we move a resource (aircraft) to a location, that it will then be assigned
to demands that can only be served from that location. This is a very simple stochastic
resource allocation problem that we can solve to optimality, providing a nice benchmark
for comparison. Our optimal solution, however, only works for this special case.

First stage Sgcond stage
(before requirements are known) (satisfying requirements)

Figure A.4 — Assigning aircraft now with an uncertain but separable future.

Powell-Final Progress report-1999-2001 Page 44

0.0% 1 - - B 8 e - < -8

-2.0% T

-4.0% +

-6.0% +

T

-8.0% +

Deviation from Exact Recourse (Moving
Average)

-10.0%
0 50 100 150 200 250 300 350 400

lterations

Figure A.5 — Convergence of the CAVE algorithm to the optimal solution.

Figure A.5 shows the convergence of the algorithm to the optimal solution. Of particular
interest is the fast rate of convergence, and the stability of the solution. This is especially
important for large scale problems (where we simply cannot run that many iterations),

First stage _ Second stage
(before requirements are known) (satisfying requirements)

Figure A.6 — We may allocate aircraft under uncertainty, but where there is
substitution in the future. This will create a nonseparable function of future
rewards.

Powell-Final Progress report-1999-2001 Page 45

and the stability is important when analyzing “what if”” scenarios.
A.5.3 CAVE on two-stage allocation problems with substitution

The next problem class is similar to the first, but now we add the important element of
realism where after moving our aircraft, we “see” the requirements and then we can
assign aircraft to requirements with substitution. Figure A.6 illustrates a problem with
substitution. Here, we have to allocate aircraft before we know exactly how they are
needed. Afterwards, we are allowed to make substitutions between aircraft.

Figure A.7 below shows comparisons between the CAVE algorithm (which is not
provably optimal for this more general problem) against the CUPPS algorithm which is
provably optimal. CUPPS is in the family of nested-Benders algorithms which use
cutting planes derived from the dual solution of the second stage problem. Although
CUPPS is optimal, we found that the CAVE algorithm produces almost identical
solutions for smaller problems. By contrast, CAVE actually outperforms CUPPS for
larger problems because it convergences much more quickly.

A.5.4 The CAVE algorithm on multicommodity flow problems

The next experiment applies the CAVE algorithm to a deterministic, integer,
multicommodity flow problem (which describes the version of the airlift mobility
problem that is solved when it is formulated as an optimization problem). We compared
the CAVE algorithm to the solution produced by a commercial LP solver (which does not

=

Objective Value

40 locatyms

~»-—DPA - Dimension 90 —<—CUPPS

~&—DPA - Dimension 40 —@— CUPPS

30 locations

~—#&—DPA - Dimension 30 —»—CUPPS

20 locations —»—DPA - Dimension 20 ~#—CUPPS

- ™ 0 ~ o

13
15
17
19
35
37
39
41
43
45
47
49

1

Sample No.

Figure A.7 — Comparison of the CAVE algorithm against an optimal solution from
Benders after 200 learning iterations. As the number of locations increases, the CAVE
approximations outperforms Benders because of faster convergence.

Powell-Final Progress report-1999-2001 Page 46

provide integer solutions). The results are shown in figure A.8, which show that the

% of Objective Upperboun‘d‘

. N
90 \ £ \1
o CAVE algorithm (produces
/ Integer solutions)
r Agg_PWlLinear_1
85 . . —m— Agg_PWlLinear_2 [
LP relaxation (solutions —e— Agg_PWLinear_3
are not integer) —%— DisAgg_Linear
DisAgg_PWL.inear
—e— Decomp_Location

91
94
e

100

Figure A.8 — The adaptive estimation logic produces near-optimal solutions on
deterministic datasets which are also integer. Here we are within half of a percent of
the optimal solution produced by a commercial solver (which does not return integer
solutions).

CAVE algorithm is producing very near optimal solutions for this very difficult problem
class.

A.5.5 The CAVE algorithm in stochastic simulations

Our last experiment reports on the results of a series of simulations comparing the
performance of simulating decisions solved using the CAVE approximations, against
those obtained by solving rolling horizon problems using (point) forecasts of future
events. We note that once the value functions have been estimated, the simulation
performed using CAVE is of comparable complexity to a traditional simulation.
However, our method normally will require running 20-30 iterations to properly warm up
the nonlinear approximations.

Figure A.9 shows the difference between making decisions based on point forecasts
versus using nonlinear functions estimated using sample estimation. The difference is
significant. We note that these results are for problems where a customer demand must
be served in the time period in which it becomes known. Other problems (which include

Powell-Final Progress report-1999-2001 Page 47

the airlift mobility problem) allow requirements to be served after they first become
available.

A.5.6 The dynamic assignment problem

The dynamic assignment problem involves assigning resources to tasks over time. Both
resources and tasks may arrive in the future. Also, the cost of assigning a resource to a
task may be uncertain. For example, we may not be able to perfectly predict the “cost” of
assigning a particular aircraft to a requirement because of the difficulty of predicting
airbase congestion or equipment failures in the future.

Dynamic routing and scheduling problems are most often solved, both in the research

100

When we account for uncertainty

N N A N N A R

85

a0

When we assume we can forecast perfectly

85

-w— Nonlinear

80 -w-Rolling Horizon, 20—
Periods

NS A8 o & O A @ PP P 4 IS S o o
S IR\ B G U ST R TR SR S SR RSO SR SR SRR S BRI RS BRI

Figure A.9 — Rolling horizon procedures use a point forecast of the future, which
means we plan for a specific outcome. Our methods produce more robust
solutions which work better as the future evolves.

literature and in engineering practice, using myopic models. The problem is solved at
time t using only the information known at time t. A major weakness of these algorithms
is that it can produce results where a particular resource is assigned to a task even though
the assignment is a very poor one, and any reasonably experienced operations specialist
would know to hold off on the assignment and wait for better options.

The dynamic assignment problem is quite different from the other resource allocation
problems we have considered because the problem is highly discrete (all decisions are
0/1) and the attribute space is extremely large. We solved the problem using adaptive
dynamic programming techniques, comparing four classes of approximations: zero (that

Powell-Final Progress report-1999-2001 Page 48

is, ignoring the impact of decision on the future), resource gradients (we consider the
value of a resource in the future), resource and task gradients (we consider the value of
both resources and tasks in the future), and “arc gradients”, where we consider the value
of a resource/task pair in the future (effectively a nonseparable approximations). All of
these approximations involve solving sequences of simple assignment problems, so the
computational complexity is no higher than a simple myopic model, with the exception
that we have to simulate the problem repeatedly in order to estimate the value functions.

The results using deterministic data indicate that we can obtain results that are very close
to the optimal solution when we use the “arc gradients” approximation. This particular
approximation is the most computationally demanding. Interestingly, when we use
stochastic data, we get the best results when using both resource and task gradients,
which are computationally fairly easy to obtain.

The dynamic assignment problem is characterized by a large attribute space. It is natural
to ask whether aggregation can be used effectively to help improve the value function.
For example, we might divide a region geographically into a 10x10 grid. Needless to
say, it will take a large number of observations to obtain a statistically valid estimate of
the value of a resource in all 100 grid squares. Fewer iterations would be needed if we
used a 5x5 grid pattern, but we would introduce larger structural errors. The problem is
the classic tradeoff in statistical model fitting; if we use too many variables, we introduce
statistical error, while if we use too few variables, we introduce structural error.

Figure A.10 shows the results of five sets of experiments, using value functions at five
different levels of aggregation. The most aggregate representation produces the best

100.00%
98.00% |
96.00%
= 9400%
£ —1x1 Grid
= 9200% 1
i % e 22 Grid
< 90.00% | 5x5 Grid
2 8.00% | e 10x10 Grid
% 20x20 Grid
o 86.00% |
84.00% -
82.00% |
80.00%
-~ 282 IsRE8RKR28 858
— -— ™~ N (323 o < < w wn [(o] [{s] M~ ~ © © [+ (]

Number of lterations

Figure A.10 — More aggregate representations perform best with fewer iterations; more
detailed (less aggregate) representations work better in the limit.

Percent of Optimal

Powell-Final Progress report-1999-2001 Page 49

results when we use the smallest number of iterations. The second most aggregate model
(where the geographical region was broken into a 2x2 grid) produced the best results for
the next set of iterations (between approximately 100 and almost 400 iterations). The
more disaggregate representation we used, the more iterations that were needed to
produce the best results.

These experiments suggested that a hybrid scheme might work best. Here, we compute
value functions at all levels of aggregation, and we use the estimate with the smallest
variance for each resource and task. We note that this logic might use a more
disaggregate estimate for resources and tasks in locations where there has been a lot of
activity, and more aggregate estimates in areas where there have been fewer observations.
Figure A.11 shows the results of a test of a hybrid strategy, which indicates that it

—1x1 Grid
e 55 Grid
e 55 Hy brid

100.00%
98.00% -
96.00%
94.00%
92.00%
90.00%
88.00% -
TPieFR8885838R k388

ltaratinn Aiimhar

Figure A.11 —If we used a hybrid scheme combining different levels of aggregation at the same

time, we get good results over the entire range of the algorithm.

produces consistently good results over the entire range of the algorithm.

A.6 The PILOTVIEW diagnostic system

We have found that when we model complex systems, we often do not understand “why
the model did that.” Furthermore, we also typically find that when we theorize why the
model behaves in a certain (usually undesirable way), that we are usually wrong.

Powell-Final Progress report-1999-2001 Page 50

Vew Optons Setiing: uom]m; Goor By Eol Properies Pow Opions Draw Options Views e

@80z EO!l

A

t ' L ’ Current View:] Default.view ']

Control Pan pnbwe | o Logend Parel Exvra Optiens Pl |

- T o Pow Options = ~ Left Mouse ~-==:=; - Right Mouse -
, Date:] Too Oct 26 1399, 10.00 P i I
R Vi DEnd.| B Oct3l 1999, 1000PM | F wiin L6 ongme | i€ mectzoom |
- -———————-—-«-} : iV oou L6 Select Lotns 16 Side 200m
" N I r i 1 i
e T i D [e (e
i i }
Speed: L f s i anovstpe |iC Povvaw || Rowid
Curent Animation Speed: S0 % H i H
|

Figure A.12 — A Snapshot of flows moving around the country, colored by an
attribute.

Simulations can provide errant results because of one of four reasons: 1) the data is
wrong, 2) the model is wrong (for example, the costs of decisions), 3) there is a flaw in
the algorithm, or 4) there is a bug in the software. The problem is that identifying which
of these is the culprit for a particular behavior is very difficult.

We have developed a general purpose diagnostic system called PILOTVIEW. This
system is designed to work on general, multi-layer, multiattribute dynamic resource
transformation problems. As a result, we are able to apply the system to problems
involving aircraft, trucks or trains. We can model two-layer problems (aircraft and
requirements; drivers and loads; locomotives and trains) or multilayer problems (at one
company, we are modeling five layers: driver, tractor, trailer, product and customer).

PILOTVIEW operates on two types of datasets. The first is an activity file that gives the
flows of resources (of different types, with different attributes) over time. There are three
basic views for this data file: a static view (plots of flows over an interval of time —A.12),

«»

Powell-Final Progress report-1999-2001 Page 51

an animation of activities (showing objects moving over a map over time — Figure A.13),
and a graph of activities plotted over the entire horizon of the simulation.

135

Curront View: lanimala.view "l

Data Pane! Model Panel Legend Pane} [Extra Options Panal

) ©oate:] " Vg 06127 169, 0800 P | [\
s e | Bl eroaz i K| E‘f' Drag bap :€ Bect, Zoom
CEdTme: o :ﬁﬁ SoctLetms | Sic Zoom
e b T [o] 7 s |1
" st ~I‘—.—'—-l—-—ll—:}'—.—l el L i Rovvake 10 Fovid
, [Current Anmation Speed: 75 % i |

Figure A.13 — A snapshot of an animation, which shows activities moving from one
location to the next.

Perhaps the most powerful tool within PILOTVIEW is the “Pilottour” module, which
brings us right inside the optimization model itself. This is the tool that allows us to
understand why the model made a particular decision. Pilottour works with a
representation that a “resource” will have a vector of attributes “a”, where there may be
more than one resource with the same set of attributes. Pilottour displays “informational
subproblems” which represent blocks of information that make up a single subproblem.
Geographically, an informational subproblem can be the entire system (at one point in
time), a single location, or a geographical area. Figure A.14 illustrates a number of
different subproblems, each shown as a box with two columns of boxes (each column
representing a resource layer). For the airlift problem, the first column represents types
of aircraft, while the second column is requirements). Pilottour allows the analyst to
click on any box or line (representing a possible decision) to obtain drill-down
information. We have found that this tool allows people other than the original
programmer of the model to analyze and diagnose problems.

Powell-Final Progress report-1999-2001 Page 52

ime S1ep: 3 e B & - . Irve orep: 3 . L .

. CLOVIS KM
T, | e
.
T,
e (AN :
vauearioz WM WBARALI120N i wenzonsion BN - USPHWOM 1208
: HNWOBARTT3A : BN_¢ HNWOBAR11EA 'NML.ND[N'M.‘, |
sertaciaon NI J e [: WOELELPI2IA [coeoisis B
ADRLH3 QUACBIR119A . ‘b [nanicxain |

SLGBNVCS18A ! - ZKCKLACIZ0A
| aveucsins WONSGNS1218 PLACCHIN204 WKCKBARIZ0A
\WECERTIIETN f F o - S
)

—
2LACNYC120A AEN_EH38T ZWSPNBY9208 A 2WSPPHRI20A

INVELACII0A T . KNKDBARI18A

PEELABQ220A [wearativzon |)/ QRCALT3I9A
PDELABQI2IA ¥ ab s [k. SALTLACH20A

y LB &3 5LBCHC) 194
| !

VIACCHC120A

MECKBART18A
HBILHHIOT KBARLAJIZ0A

CLOVIS ikt | ABNLH301 ZWSPLACS20A
QALTLAC321A ‘: QBIRLACT19A SRICCHI120A

i VSDGKCK120A

AT | |
/' BBIRWATS 19A E ZUACWSP21A
i
I
ii
!

[\ #3 % MIULBEL120A NKCKBARIISA

\3
e
T

& ZcHpHxe20A

1 i

UACWSP2IA

i | QBIRLAC119A

UBIRPIT119A

WL BHOT:

Figure A.14 — PILOTTOUR allows the user to go inside an optimization model,
looking not only at the decisions that were made, but also the decisions that were not
made, and why.

A.7 Optimization with patterns: combining “OR” and “AI”

One of the most powerful techniques that we have learned represents a merger of “OR”
and “AI”. “OR” typically refers to minimizing a cost function to produce a set of
decisions. “Al” “Al”, by contrast, uses set of rules, which represent a mapping of a
state to a decision. The limitation of AI techniques is that for general resource allocation
problems, the state of the system is hopelessly complex, making the design of general
sets of rules very cumbersome. This limitation usually forces modelers to simplify the
state of the system, but this in turn can produce undesirable behaviors. The challenge is
striking a balance between the complexity of the rules and the quality of the solution.

Optimization methods (“OR”) on the other hand, depend on the definition of a cost
function to get the desired behavior. If an accurate cost function can be specified, and if
an algorithm can be designed to minimize the cost function, the payoff is a very general
and flexible system that responds nicely to different datasets. The problem is that it is

.

Powell-Final Progress report-1999-2001 Page 53

often very hard to design a cost function that produces the behavior desired by the
analyst. A common complaint of modelers using optimization is that it is very hard to
make the model “do something” by tweaking the cost function. Sometimes, we know
what we want the model to do, and we want to simply “tell it” what to do.

We have found a way to merge the strengths of both techniques. We start with an
engineering cost function of the sort expected by an optimization model. This would
normally be written:

P .
X/ (l)=arg minc,x,

Assume that an element of the decision vector x, is given by x_, which is the number of

times that we act on a resource with attribute a using a decision of type d . In real
problems, the attribute vector a can be relatively complex (think of all the characteristics
of an aircraft with a pilot moving a requirement to a destination). A pattern is the
likelihood of a particular decision being used on a particular resource (note that we do not
even consider the relationship between a decision and the state of the entire system; we
restrict our patterns to relationships between decisions and the attributes of a single
resource). However, it is very common for a pattern to be expressed at an aggregated
level. Let 4 and d be aggregations of both the attribute vector and the decision. For
example, the pattern may be that “aircraft of a particular type at a particular location
should normally be sent to the following airbase.” Let

p(a,d) =The probability that decision d is associated with attribute 4.

If p(a, c?) =1 then we would say that the pattern is a rule. In general, a pattern may
simply be a probability. We incorporate patterns in the following way:

2
X[(1) =argminc,x, +0 (p,;(x) - pl;)
a,d

where p;’[; represent historical priors (patterns specified to the model) and:

Xaa

p[n; (x) =
- Xaa
d

= Fraction of time that we make decision 4.

These patterns can be quite simple. Since we use a cost function, it is not necessary that
they fully specify the behavior of the system. As a result, we can use patterns (defined on
aggregated attribute vectors and decisions) that only have a few columns. We have found
that in practice (this work has been used at a major trucking company and at two
railroads) the patterns can be fairly simple. Furthermore, they may either be estimated

Powell-Final Progress report-1999-2001 ‘ Page 54

from historical activities (as we have done at the trucking company) or through manually
specified files. We have also experimented by expressing patterns at multiple levels of
aggregation.

